TITLE V PERMIT RENEWAL APPLICATION MARTINSBURG FACILITY PLANT ID NO. 003-00002

Prepared for:

Continental Brick Company

154 Charles Town Road Martinsburg, West Virginia 25405

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, S.E. Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-Mail: potesta@potesta.com

Project No. 0101-13-0410-001

November 2013

TABLE OF CONTENTS

General Forms	SECTION I - VI
Area Map	ATTACHMENT A
Plot Plan	ATTACHMENT B
Process Flow Diagram	ATTACHMENT C
Emission Units Table	ATTACHMENT D
Emission Unit Form(s)	ATTACHMENT E
Schedule of Compliance Form	ATTACHMENT F
Control Device Form(s)	ATTACHMENT G
Compliance Assurance Monitoring Form	ATTACHMENT H
Emission Calculations	APPENDIX

SECTION I - VI GENERAL FORMS

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street SE Charleston, WV 25304 Phone: (304) 926-0475

www.dep.wv.gov/daq

INITIAL/RENEWAL TITLE V PERMIT APPLICATION - GENERAL FORMS

Section 1: General Information

Section 1. General Information	
Name of Applicant (As registered with the WV Secretary of State's Office): Continental Brick Company	2. Facility Name or Location: Martinsburg Facility
3. DAQ Plant ID No.:	4. Federal Employer ID No. (FEIN):
003-00002	54-1267012
5. Permit Application Type:	
	perations commence? 1984 expiration date of the existing permit? 05/18/2014
6. Type of Business Entity:	7. Is the Applicant the:
☐ Corporation ☐ Governmental Agency ☐ LLC ☐ Partnership ☐ Limited Partnership	☐ Owner ☐ Operator ☒ Both
8. Number of onsite employees: 50	If the Applicant is not both the owner and operator, please provide the name and address of the other party.
. Governmental Code:	
☐ Federally owned and operated; 1 ☐ M	ounty government owned and operated; 3 funicipality government owned and operated; 4 istrict government owned and operated; 5
0. Business Confidentiality Claims	
Does this application include confidential information (per 45CSR31)? ☐ Yes ⊠ No
If yes, identify each segment of information on each paginstification for each segment claimed confidential, included accordance with the DAQ's "PRECAUTIONARY NOTICE."	uding the criteria under 45CSD \$21 4 1 and :

11. Mailing Address							
Street or P.O. Box: 154 Charles Tov	vn Road						
City: Martinsburg	City: Martinsburg State: WV Zip: 25405						
Telephone Number: (304) 263-697-	4	Fax Number: (304)	267-0793				
12. Facility Location							
Street: 154 Charles Town Road City: Martinsburg County: Berkeley 4368.7							
UTM Easting: 245.4 km	UTM Northing	g: 4,368.9 km	Zone:] 17 or 🛛 18			
From Interstate 81 take Exit 12, travel the right side of State Route 9.		oute 9 approximately 1	.5 miles.	The facility is located on			
Portable Source? Yes	No						
Is facility located within a nonattainment area? Yes No If yes, for what air pollut							
Is facility located within 50 miles of	⊠ Yes □ No		me the affected state(s). Pennsylvania, Maryland				
Is facility located within 100 km of a			me the area(s). ah National Park				

Class I areas include Dolly Sods and Otter Creek Wilderness Areas in West Virginia, and Shenandoah National Park and James River Face Wilderness Area in Virginia.

Page 2 of 20

13. Contact Information					
Responsible Official: Donald B. Sult		Title: Vice President - Operations			
Street or P.O. Box: 154 Charles Town I	Road				
City: Martinsburg	State: WV	Z ip: 25405			
Telephone Number: (304) 263-6974	Fax Number: (30	04) 267-0793			
E-mail address: dsult@continetalbrick.co	om				
Environmental Contact: Same as Respon	nsible Official	Title:			
Street or P.O. Box:					
City:	State:	Zip: -			
Telephone Number: () -	Fax Number: () -			
E-mail address:					
pplication Preparer: Patrick E. Ward		Title: Manager of Air Permitting			
company: Potesta & Associates, Inc.					
treet or P.O. Box: 7012 MacCorkle Avenu	ie, S.E.				
ity: Charleston	State: WV	Zip: 25304			
elephone Number: (304) 342-1400	ephone Number: (304) 342-1400				
mail address: peward@potesta.com					

14. Facility Description

List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.

T			
Process	Products	NAICS	SIC
Manufacturing	Face Brick	327121	3251

Provide a general description of operations.

The Martinsburg Facility is a face brick manufacturing operation which includes quarry to final brick production and storage. The weathered Martinsburg Shale is quarried by the use of pans, crushed, screened, wetted, mixed in a pug mill, vacuum extruded, trimmed and cut to form the final shape of the green face bricks. Green face bricks then pass through the warming room, drying room, and kiln to remove the moisture in a controlled manner. Fired bricks are sorted and packaged for sale. Bricks not meeting the specifications (waste bricks) are disposed on property.

- 15. Provide an Area Map showing plant location as ATTACHMENT A.
- 16. Provide a **Plot Plan(s)**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as **ATTACHMENT B**. For instructions, refer to "Plot Plan Guidelines."
- Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT
 Process Flow Diagrams should show all emission units, control equipment, emission points, and their relationships.

Section 2: Applicable Requirements

10						
18. Applicable Requirements Summary						
Instructions: Mark all applicable requirements.						
☐ SIP	☐ FIP					
☑ Minor source NSR (45CSR13)	☐ PSD (45CSR14)					
☐ NESHAP (45CSR15)	☐ Nonattainment NSR (45CSR19)					
⊠ Section 111 NSPS (40CFR60 Subpart OOO)	☐ Section 112(d) MACT standards					
☐ Section 112(g) Case-by-case MACT	☐ 112(r) RMP					
☐ Section 112(i) Early reduction of HAP	☐ Consumer/commercial prod. reqts., section 183(e)					
☐ Section 129 Standards/Reqts.	☐ Stratospheric ozone (Title VI)					
☐ Tank vessel reqt., section 183(f)	☐ Emissions cap 45CSR§30-2.6.1					
☐ NAAQS, increments or visibility (temp. sources)	☐ 45CSR27 State enforceable only rule					
☐ 45CSR4 State enforceable only rule	☐ Acid Rain (Title IV, 45CSR33)					
☐ Emissions Trading and Banking (45CSR28)	☐ Compliance Assurance Monitoring (40CFR64)					
☐ CAIR NO _x Annual Trading Program (45CSR39)	☐ CAIR NO _x Ozone Season Trading Program (45CSR40)					
☐ CAIR SO ₂ Trading Program (45CSR41)						
19. Non Applicability Determinations						
List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. 3.7.2. The following requirements specifically identified are not applicable to the source based on the determinations set forth below. The permit shield shall apply to the following requirements provided the conditions of the determinations are met.						
45CSR5 The coal handling Operations are regulated by 45CSR§§5-2.4.b. & 2.14.	45CSR7 and therefore are exempt in accordance with					
45CSR17 The facility is regulated by 45CSR7 and ther 45CSR§17-6.	refore exempt in accordance with 45 CSR§7-10.2 and					
40 CFR Part 60, Subpart Y The coal handling facility pro	cesses less than 200 tons per day.					
40 CFR Part 60, Subpart OOO Excluding existing Crusher No. 1, all the other shale processing equipment known as the grinding building commenced construction prior to August 31, 1983 and have not been reconstructed or modified.						
Permit Shield						

	10 Non Applicability D.4.
	19. Non Applicability Determinations (Continued) - Attach additional pages as necessary.
	List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. 40 CFR Part 60, Subpart IIII The emergency generator commenced construction prior to July 11, 2005.
	40 CFR Part 63, Subpart ZZZZ The emergency generator has a design capacity less than 500 HP.
	40 C.F.R. Part 64 There are no pollutant specific emissions units (PSEU) at this facility that satisfy all of the applicability criteria requirements of 40 CFR §64.2(a), i.e., that: 1) have precontrol regulated pollutant potentia emissions (PTE) equal to or greater than the "major" threshold limits to be classified as a major source; 2) are subject to an emission limitation or standard and; 3) have a control device to achieve compliance with such emission limitation or standard. Therefore, the facility is not subject to the Compliance Assurance Monitoring (CAM) rule.
-	
\boxtimes	Permit Shield
-	

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

Re No		Existing R30 Permit Condition	Name	Requirement
1	45CSR§6-3.1.	3.1.1.	Open Burning	The open burning of refuse by any person, firm, corporation, association or public agency is prohibited except as noted in 45CSR §6-3.1.
2	45CSR§6-3.2.	3.1.2.	Open Burning Exemptions	The exemptions listed in 45CSR§6-3.1 are subject to the followin stipulation: Upon notification by the Secretary, no person shall cause, suffer allow or permit any form of open burning during existing or predicte periods of atmospheric stagnation. Notification shall be made by such mean as the Secretary may deem necessary and feasible.
3	40 C.F.R. §61.145(b) and 45CSR34	3.1.3.	Asbestos	The permittee is responsible for thoroughly inspecting the facility, or part of the facility, prior to commencement of demolition or renovation for the presence of asbestos and complying with 40 C.F.R. §61.145, 40 C.F.R. §61.148, and 40 C.F.R. § 61.150. The permittee, owner, or operator mus notify the Secretary at least ten (10) working days prior to the commencement of any asbestos removal on the forms prescribed by the Secretary if the permittee is subject to the notification requirements of 40 C.F.R. §61.145(b)(3)(i). The USEPA, the Division of Waste Management and the Bureau for Public Health - Environmental Health require a copy of this notice to be sent to them.
4	45CSR§4-3.1 State Enforceable only.	3.1.4.	Odor	No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.
5	45CSR§11-5.2.	3.1.5.	Standby Plan for Reducing Emissions	When requested by the Secretary, the permittee shall prepare standby plans for reducing the emissions of air pollutants in accordance with the objectives set forth in Tables I, II, and III of 45CSR11.
6	WV Code §22-5-4(a)(14)	3.1.6.	Emission Inventory	The permittee is responsible for submitting, on an annual basis, an emission inventory in accordance with the submittal requirements of the Division of Air Quality.
7	40CFR82 Subpart F	3.1.7.	Ozone-depleting Substances	For those facilities performing maintenance, service, repair or disposal of appliances, the permittee shall comply with the standards for recycling and emissions reduction pursuant to 40 C.F.R. Part 82, Subpart F, except as provided for Motor Vehicle Air Conditioners (MVACs) in Subpart B: a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the prohibitions and required practices pursuant to 40 C.F.R. §§ 82.154 and 82.156. b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to 40 C.F.R. § 82.158. c. Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to 40 C.F.R. § 82.161.
	40CFR68	3.1.8.	Risk Management Plan	Should this stationary source, as defined in 40 C.F.R. § 68.3, become subject to Part 68, then the owner or operator shall submit a risk management plan (RMP) by the date specified in 40 C.F.R. § 68.10 and shall certify compliance with the requirements of Part 68 as part of the annual compliance certification as required by 40 C.F.R. Part 70 or 71.
	45CSR§7-5.1.	3.1.9.	Fugitive Particulate Matter	No person shall cause, suffer, allow or permit any manufacturing process or storage structure generating fugitive particulate matter to operate that is not equipped with a system, which may include, but not be limited to, process equipment design, control equipment design or operation and maintenance procedures, to minimize the emissions of fugitive particulate matter. To minimize means such system shall be installed, maintained and operated to ensure the lowest fugitive particulate matter emissions reasonably achievable.
4	ISCSR§7-5.2.	3.1.10.	Particulate Matter Control of Plant	The owner or operator of a plant shall maintain particulate matter control of the plant premises, and plant owned, leased or controlled access roads, by paving, application of asphalt, chemical dust suppressants or other suitable dust control measures. Good operating practices shall be implemented and when necessary particulate matter suppressants shall be applied in relation to stockpilling and general material handling to minimize particulate matter generation and atmospheric entrainment.

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

	Ref No. Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
12	WV Code § 22-5-4(a)(15), 45CSR7, 45CSR10 and 45CSR13		Stack testing.	As per provisions set forth in this permit or as otherwise required by the Secretary, in accordance with the West Virginia Code, underlying regulations, permits and orders, the permittee shall conduct test(s) to determine compliance with the emission limitations set forth in this permit and/or established or set forth in underlying documents. The Secretary, or his duly authorized representative, may at his option witnessor conduct such test(s). Should the Secretary exercise his option to conduct such test(s), the operator shall provide all necessary sampling connections and sampling ports to be located in such manner as the Secretary may require, power for test equipment and the required safety equipment, such as scaffolding, railings and ladders, to comply with generally accepted good safety practices. Such tests shall be conducted in accordance with the methods and procedures set forth in this permit or as otherwise approved or specified by the Secretary in accordance with the following: a. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with 40 C.F.R. Parts 60, 61, and 63, if applicable, in accordance with the Secretary's delegated authority and any established equivalency determination methods which are applicable. b. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with applicable requirements which do not involve federal delegation. In specifying or approving such alternative testing to the test methods, the Secretary, to the extent possible, shall utilize the same equivalency criteria as would be used in approving such changes under Section 3.3.1 a. of this permit. c. All periodic tests to determine mass emission limits from or air pollutant concentrations in discharge stacks and such other tests as specified in this permit shall be conducted in
	Permit No. R13-0682 (Condition 4.3.1)]	3.4.1.	Monitoring information.	The permittee shall keep records of monitoring information that include the following: a. The date, place as defined in this permit and time of sampling or measurements; b. The date(s) analyses were performed; c. The company or entity that performed the analyses; d. The analytical techniques or methods used; e. The results of the analyses; and f. The operating conditions existing at the time of sampling or measurement.
13	45CSR§30-5.1.c.2.B.	3.4.2.	Retention of records.	The permittee shall retain records of all required monitoring data and support information for a period of at least five (5) years from the date of monitoring sample, measurement, report, application, or record creation date. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit. Where appropriate, records may be maintained in computerized form in lieu of the above records.
14	[45CSR§30-5.1.c.State- Enforceable only.]	3.4.3.	Odors	For the purposes of 45CSR4, the permittee shall maintain a record of all odor complaints received, any investigation performed in response to such a complaint, and any responsive action(s) taken.
15	[45CSR§30-5.1.c.]	3.4.4.	Dust Suppressant Usage Record	The permittee shall maintain records indicating the use of any dust suppressants or any other suitable dust control measures applied at the facility. The permittee shall also inspect all fugitive dust control systems monthly to ensure that they are operated and maintained in conformance with their designs. The permittee shall maintain records of all scheduled and non-scheduled maintenance and shall state any maintenance or corrective actions taken as a result of the monthly inspections, the times the fugitive dust control system(s) were inoperable and any corrective actions taken.

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

Rei No.	A STATE OF THE STA	Existing R30 Permit Condition	Name	Requirement
16	45CSR§§30-4.4. and 5.1.c.3.D.	3.5.1.	Responsible Official	Any application form, report, or compliance certification required by this permit to be submitted to the DAQ and/or USEPA shall contain a certification by the responsible official that states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete.
17	45CSR§30-5.1.c.3.E.	3.5.2	Confidential Information	A permittee may request confidential treatment for the submission of reporting required under 45CSR§30-5.1.c.3. pursuant to the limitations and procedures of W.Va. Code § 22-5-10 and 45CSR31.
18	NA	3.5.3.	Addresses	All notices, requests, demands, submissions and other communications required or permitted to be made to the Secretary of DEP and/or USEPA shall be made in writing and shall be deemed to have been duly given when delivered by hand, mailed first class or by private carrier with postage prepaid to the address(es) set forth below or to such other person or address as the Secretary of the Department of Environmental Protection may designate: If to the DAQ: Director WVDEP Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone: 304/926-0475 FAX: 304/926-0478 If to the US EPA: Associate Director Office of Enforcement and Permits Review (3AP12) U. S. Environmental Protection Agency Region III 1650 Arch Street Philadelphia, PA 19103-2029
19	45CSR§30-8.	3.5.4.	Certified Emissions Statement	The permittee shall submit a certified emissions statement and pay fees on an annual basis in accordance with the submittal requirements of the Division of Air Quality.
20	45CSR§30-5.3.e	3,5.5.	Compliance Certification	The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ. In addition to the annual compliance certification, the permittee may be required to submit certifications more frequently under an applicable requirement of this permit. The annual certification shall be submitted to the DAQ and USEPA on or before March 15 of each year, and shall certify compliance for the period ending December 31. The permittee shall maintain a copy of the certification on site for five (5) years from submittal of the certification.
	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	The permittee shall submit reports of any required monitoring on or before September 15 for the reporting period January 1 to June 30 and on or before March 15 for the reporting period July 1 to December 31. All instances off deviation from permit requirements must be clearly identified in such reports. All required reports must be certified by a responsible official consistent with 45CSR§30-4.4.
2 N	NA	3.5.7.	Emergencies	For reporting emergency situations, refer to Section 2.17 of this permit.

Permit Shield

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements).

	Re	B	Existing	Name	Requirement
	No		R30 Permit Condition		Requirement
	23	45CSR§30-5.1.c.3.C. 45CSR§30-5.1.c.3.B.	3.5.8.	Supplemental Reports Deviations	a. In addition to monitoring reports required by this permit, the permittee shall promptly submit supplemental reports and notices in accordance with the following: 1. Any deviation resulting from an emergency or upset condition, as defined in 45CSR§30-5.7., shall be reported by telephone or telefax within one (1) working day of the date on which the permittee becomes aware of the deviation, if the permittee desires to assert the affirmative defense in accordance with 45CSR§30-5.7. A written report of such deviation, which shall include the probable cause of such deviations, and any corrective actions or preventative measures taken, shall be submitted and certified by a responsible official within ten (10) days of the deviation. 2. Any deviation that poses an imminent and substantial danger to public health, safety, or the environment shall be reported to the Secretary immediately by telephone or telefax. A written report of such deviation, which shall include the probable cause of such deviation, and any corrective actions or preventative measures taken, shall be submitted by the responsible official within ten (10) days of the deviation. 3. Deviations for which more frequent reporting is required under this permit shall be reported on the more frequent basis. 4. All reports of deviations shall identify the probable cause of the deviation and any corrective actions or preventative measures taken. b. The permittee shall, in the reporting of deviations from permit requirements, including those attributable to upset conditions as defined in this permit, report the probable cause of such deviations and any corrective actions or preventative measures taken in accordance with any rules of the Secretary.
	24	45CSR§30-4.3.h.1.B.	3.5.9.	New Applicable Requirements	
	25	45CSR§30-4.3.h.1.	3.6.1.	Compliance Plan	Continental Brick Company shall enter into a Consent Order with the WVDAQ that addresses its 45CSR§30-4.0 violation of not submitting a timely and complete Title V Permit application and its 45CSR§30-6.2 violation for operating without having submitted a timely and complete Title V Permit application. When a consent order pertaining to these violations becomes effective, the requirements of such consent order shall be considered as
	26		3.7.1.	Permit Shield	"State-Enforceable only" applicable requirements to this Title V permit. The permittee is hereby granted a permit shield in accordance with 45CSR§30-5.6. The permit shield applies provided the permittee operates in accordance with the information contained within this permit.
		45CSR§30-5.6.	3.7.2.		The following requirements specifically identified are not applicable to the source based on the determinations set forth below. The permit shield shall apply to the following requirements provided the conditions of the determinations are met. 45CSR5 The coal handling Operations are regulated by 45CSR7 and therefore are exempt in accordance with 45CSR§\$5-2.4.b. & 2.14. 45CSR17 The facility is regulated by 45CSR7 and therefore exempt in accordance with 45CSR§\$7-10.2 and 45CSR\$17-6. 40 CFR Part 60, Subpart Y The coal handling facility processes less than 200 tons per day. 40 CFR Part 60, Subpart OOO Excluding existing Crusher No. 1, all the other shale processing equipment known as the grinding building commenced construction prior to August 31, 1983 and have not been reconstructed or modified. 40 CFR Part 60, Subpart IIII The emergency generator commenced construction prior to July 11, 2005. 40 CFR Part 63, Subpart ZZZZ The emergency generator has a design capacity less than 500 HP. 40 C.F.R. Part 64 There are no pollutant specific emissions units (PSEU) at this facility that satisfy all of the applicability criteria requirements of 40 CFR §64.2(a), i.e., that: 1) have precontrol regulated pollutant potential emissions (PTE) equal to or greater than the "major" threshold limits to be classified as a major source; 2) are subject to an emission limitation or standard and; 3) have a control device to achieve compliance with such emission limitation or standard. Therefore, the facility is not subject to the Compliance Assurance Monitoring (CAM) rule.
\boxtimes	Pe	ermit Shield			

For all facility-wide applicable requirements listed above, provide monitoring/testing/recordkeeping/ reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Re No).	Existing R30 Permit Condition	Name	Method of Compliance
1	45CSR§6-3.1.	3.1.1.	Open Burning	NA. Facility does not conduct open burning.
2	45CSR§6-3.2.	3.1.2.	Open Burning Exemptions	NA NA
3	40 C.F.R. §61.145(b) and 45CSR34	3.1.3.	Asbestos	Inspection will occur as required.
4	45CSR§4-3.1 State Enforceable only.	3.1.4.	Odor	Recordkeeping of complaints.
5	45CSR§11-5.2.	3.1.5.	Standby Plan for Reducing Emissions	When requested.
6	WV Code §22-5-4(a)(14)	3.1.6.	Emission Inventory	Reporting.
7	40CFR82 Subpart F	3.1.7.	Ozone-depleting Substances	Requirement to follow: a. 40CFR §§ 82.154 & 82.156; b. 40CFR § 82.158; c. 40CFR 82.161.
8	40CFR68	3.1.8.	Risk Management Plan	Submission if required.
9	45CSR§7-5.1.	3.1.9.	Fugitive Particulate Matter	Fugitive dust will be controlled in accordance with the information contained within the permit applications and required by the permit
10	45CSR§7-5.2.	3.1.10.	Particulate Matter Control of Plant	Dust control will be maintained. Good operating practices will be followed.
11	WV Code § 22-5-4(a)(15), 45CSR7, 45CSR10 and 45CSR13	3.3.1.	Stack testing.	Stack testing will be conducted as needed.
12	45CSR§30-5.1.c.2.A, 45CSR13, Permit No. R13-0682 (Condition 4.3.1)]	3.4.1.	Monitoring information.	Records of monitoring will include the required information.
13	45CSR§30-5.1.c.2.B.	3.4.2.	Retention of records.	Monitoring records and support information will be kept for 5 years.
4	[45CSR§30-5.1.c.State- Enforceable only.]	3.4.3,	Odors	A record of odor complaints, investigations, and responses will be kept.
.5	[45CSR§30-5.1.c.]	3.4.4.	Dust Suppressant Usage Record	A record of dust suppressant use will be kept.
6	45CSR§§30-4.4. and 5.1.c.3.D.	3.5.1.	Responsible Official	Certifications will be by a Responsible Official.
7	45CSR§30-5.1.c.3.E.	3.5.2	Confidential Information	Request will be made as needed.
8	NA	3.5.3.	Addresses	Appropriate address will be used for mailings.
)	45CSR§30-8.	3.5.4.	Certified Emissions Statement	Facility will submit a Certified Emissions Statement and pay fees.
	45CSR§30-5.3.e	3.5.5.	Compliance Certification	Compliance certifications will be submitted.
	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	Semi annual monitoring reports will be submitted.
	NA	3.5.7.	Emergencies	The facility will refer to Section 2.17 for reporting emergencies.

		3.3.4.	Statement	Facility will submit a Certified Emissions Statement and pay fees.
20	45CSR§30-5.3.e	3.5.5.	Compliance Certification	Compliance certifications will be submitted.
21	45CSR§30-5.1.c.3.A.	3.5.6.	Semi Annual Monitoring Reports	Semi annual monitoring reports will be submitted.
22	NA	3.5.7.	Emergencies	The facility will refer to Section 2.17 for reporting emergencies.
Are y	ou in compliance with all facil	ity-wide applicable re	equirements? 🛛	Yes No
If no,	complete the Schedule of Com	pliance Form as ATT	ACHMENT F.	

For all facility-wide applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

No.	Rule/ Regulation/ R13 Permit	n/R13 Permit Existing R30 Permit Condition		Method of Compliance
23	45CSR§30-5.1.c.3.C. 45CSR§30-5.1.c.3.B.	3.5.8.	Supplemental Reports Deviations	The facility will promptly submissupplemental reports and notices as required.
24	45CSR§30-4.3.h.1.B.	3.5.9.	New Applicable Requirements	The facility will comply with new applicable requirements.
25	45CSR§30-4.3.h.1.	3.6.1.	Compliance Plan	The facility will meet compliance plan requirements.
26	45CSR§30-5.6.	3.7.1.	Permit Shield	NA
27	45CSR§30-5.6.	3.7.2.	Permit Shield	NA
+				
-				
_				
+				
+				
+				
+				
+				

Permit or Consent Order Number	Date of Issuance MM/DD/YYYY	List any Permit Determinations that Affect the Permit (if any)
R13-682A	06/14/2010	None
R30-00300002-2009 SM01	05/18/2009	None
	1 1	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	1 1	
	/ /	
	/ /	
	1 1	
	/ /	
	/ /	
	/ /	
	1 1	
	/ /	
	/ /	
	1 1	
	/ /	
	1 1	
	1 1	
	/ /	

Permit Number	Date of Issuance	Permit Condition Number
None	MM/DD/YYYY	
	1 1	
	1 1	
	/ /	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	/ /	
	1 1	
	/ /	
	1 1	
	1 1	
	1 /	
	/ /	
	1 1	

Criteria Pollutants	Potential Emissions	
Carbon Monoxide (CO)	88.61	
Nitrogen Oxides (NO _X)	39.22	
Carbon Monoxide (CO)	See Metal HAPS	
Particulate Matter (PM _{2.5}) ¹	73.98	
Particulate Matter (PM ₁₀) ¹	129.13	
Total Particulate Matter (TSP)	188.67	
Sulfur Dioxide (SO ₂)	122.18	
Volatile Organic Compounds (VOC)	1.88	
Hazardous Air Pollutants ²	Potential Emissions	
OC HAPS	0.69	
1etal HAPS	0.01	
egulated Pollutants other than Criteria and HAP	Potential Emissions	
	130.87	
CL	12.29	
e	68,234	

 $^{^{1}}PM_{2.5}$ and PM_{10} are components of TSP.

²For HAPs that are also considered PM or VOCs, emissions should be included in both the HAPs section and the Criteria Pollutants section.

Section 4: Insignificant Activities

24	Ins	ignificant Activities (Check all that apply)			
X		Air compressors and pneumatically operated equipment, including hand tools.			
X] 2.	Air contaminant detectors or recorders, combustion controllers or shutoffs.			
	3.	Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment.			
	4.	Bathroom/toilet vent emissions.			
	5.	Batteries and battery charging stations, except at battery manufacturing plants.			
	5 8 stations, except at outlet y manufacturing plants.				
	7.	Blacksmith forges.			
	8.	Boiler water treatment operations, not including cooling towers.			
\boxtimes	9.	Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.			
	10.	CO ₂ lasers, used only on metals and other materials which do not emit HAP in the process.			
	11.	Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.			
	12.	Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.			
	13.	Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.			
	14.	Demineralized water tanks and demineralizer vents.			
	15.	Drop hammers or hydraulic presses for forging or metalworking.			
	16.	Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.			
	17.	Emergency (backup) electrical generators at residential locations.			
	18.	Emergency road flares.			
	19.	Emission units which do not have any applicable requirements and which emit criteria pollutants (CO, NO _x , SO ₂ , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.			
		Please specify all emission units for which this exemption applies along with the quantity of criteria pollutants emitted on an hourly and annual basis:			
	3				
	,				

2	4. Ins	ignificant Activities (Check all that apply)
	20	D. Emission units which do not have any applicable requirements and which emit hazardous air pollutants into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27. Please specify all emission units for which this exemption applies along with the quantity of hazardous air pollutants as per 45CSR27.
		air pollutants emitted on an hourly and annual basis:
	21.	Environmental chambers not using hazardous air pollutant (HAP) gases.
X	22.	Equipment on the premises of industrial and manufacturing operations used solely for the purpose of
<u></u>		preparing food for numan consumption.
	23.	Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.
	24.	Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.
	25.	Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.
	26.	Fire suppression systems.
	27.	Firefighting equipment and the equipment used to train firefighters.
	28.	Flares used solely to indicate danger to the public.
	29.	Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.
	30.	Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.
	31.	Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.
\perp	32.	Humidity chambers.
	33.	Hydraulic and hydrostatic testing equipment.
	34. 35.	Indoor or outdoor kerosene heaters.
	36.	Internal combustion engines used for landscaping purposes.
4	37.	Laser trimmers using dust collection to prevent fugitive emissions.
XI I	38.	Laundry activities, except for dry-cleaning and steam boilers.
	39.	Natural gas pressure regulator vents, excluding venting at oil and gas production facilities. Oxygen scavenging (de-aeration) of water.
5+	40.	Ozone generators.
<u> </u>	41.	
		Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant

24.	. Insig	gnificant Activities (Check all that apply)
		owners/operators must still get a permit if otherwise requested.)
\boxtimes	42.	Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.
	43.	Process water filtration systems and demineralizers.
	44.	Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.
	45.	Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.
\boxtimes	46.	Routing calibration and maintenance of laboratory equipment or other analytical instruments.
	47.	Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.
	48.	Shock chambers.
	49.	Solar simulators.
\boxtimes	50.	Space heaters operating by direct heat transfer.
	51.	Steam cleaning operations.
	52.	Steam leaks.
	53.	Steam sterilizers.
	54.	Steam vents and safety relief valves.
	55.	Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.
	56.	Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are not appropriate for this list.
	57.	Such other sources or activities as the Director may determine.
	58.	Tobacco smoking rooms and areas.
	59.	Vents from continuous emissions monitors and other analyzers.

25. Equipment Table

Fill out the Title V Equipment Table and provide it as ATTACHMENT D.

26. Emission Units

For each emission unit listed in the Title V Equipment Table, fill out and provide an Emission Unit Form as ATTACHMENT E.

For each emission unit not in compliance with an applicable requirement, fill out a Schedule of Compliance Form as ATTACHMENT F.

27. Control Devices

For each control device listed in the Title V Equipment Table, fill out and provide an Air Pollution Control Device Form as ATTACHMENT G.

For any control device that is required on an emission unit in order to meet a standard or limitation for which the potential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to the Title V Major Source Threshold Level, refer to the Compliance Assurance Monitoring (CAM) Form(s) for CAM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission Unit (PSEU) as ATTACHMENT H.

28. Ce	ertification of Truth, Accuracy and Completeness and	Certification of Compliance
Note:	This Certification must be signed by a responsible offic submitted with the application. Applications without as as incomplete.	cial. The original , signed in blue ink , must be n original signed certification will be considered
a. Cert	tification of Truth, Accuracy and Completeness	
I certify submitte responsil knowled false stat	that I am a responsible official (as defined at 45CSR§30 mission on behalf of the owners or operators of the source under penalty of law that I have personally examined and it is attachments. Based on my bility for obtaining the information, I certify that the state lage and belief true, accurate, and complete. I am aware the tements and information or omitting required statements and information or omitting required statements and information.	d am familiar with the statements and its attachments. d am familiar with the statements and information inquiry of those individuals with primary ements and information are to the best of my
b. Comp	pliance Certification	
undersign	or requirements identified in the Title V Application for valued hereby certify that, based on information and belief for ant sources identified in this application are in compliance.	ormed after reasonable in a
	ible official (type or print)	
Name: De	onald B. Sult	Title: Vice President - Operations
Responsit	ble official's signature: (Must be signed and dated in	Signature Date: _//-/3-/3
		orde link)

No	ote: Please check all applicable attachments included with this permit application:
	ATTACHMENT A: Area Map
×	ATTACHMENT B: Plot Plan(s)
	ATTACHMENT C: Process Flow Diagram(s)
\boxtimes	ATTACHMENT D: Equipment Table
\boxtimes	ATTACHMENT E: Emission Unit Form(s)
\boxtimes	ATTACHMENT F: Schedule of Compliance Form(s)
\boxtimes	ATTACHMENT G: Air Pollution Control Device Form(s)
\boxtimes	ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s)

All of the required forms and additional information can be found and downloaded from, the DEP website at www.dep.wv.gov/daq, requested by phone (304) 926-0475, and/or obtained through the mail.

ATTACHMENT A AREA MAP

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE, Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-Mail: potesta@potesta.com Martinsburg Facility
Continental Brick Company

Martinsburg, West Virginia Project No. 0101-13-0410-001

ATTACHMENT B PLOT PLAN

GE Files: N-V09-25.sid -YR\2013\13-0410 CON 10y 12, 2013 - 10:59am

PROJECT #:13-0410-001

FILENAME: 13-0410-001-2

Potesta & Associates, Inc. ENGINEERS AND ENVIRONMENTAL CONSULTANTS

7012 MacCorkle Ave. SE, Charleston, WV 25304 TEL: (304) 342-1400 FAX: (304) 343-9031 E-Mail Address: potesta@potesta.com

CONTINENTAL BRICK COMPANY MARTINSBURG, WEST VIRGINIA

Scale N.T.S.

Dwg. No.

FIGURE 2 Date NOVEMBER 2013

ATTACHMENT C PROCESS FLOW DIAGRAM

FIGURE 1

Date NOVEMBER 2013

E-Mail Address: potesta@potesta.com

PROJECT #: 13-0410

FILENAME: 13-0410-001-2

ATTACHMENT D EMISSION UNITS TABLE

ATTACHMENT D - Emission Units Table (includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

Emission Unit ID ¹	Emission Point ID		Year Installed/ Modified	Design Capacity	Control Device ¹
Raw Feed,	Grinding Bu	uilding, and Plant Feed System			
001	1S	Open Stockpile No. 1 - OS1	1981	75 tph/153,300 tpy	N
002	2S	Truck-Endloader Fed Bin - B1	1981	75 tph/153,300 tpy	FE
003	3S	Chain Conveyor No. 1 - CC1	1981	75 tph/153,300 tpy	FE
004	4S	Belt Conveyor No. 1 - BC1	1981	75 tph/153,300 tpy	FE
005	5S	Belt Conveyor No. 2 - BC2	1981	75 tph/153,300 tpy	FE
006	6S	Crusher No. 1 - CR1	2006	75 tph/153,300 tpy	FE
007	7S	Belt Conveyor No. 3 - BC3	1981	75 tph/153,300 tpy	FE
008	8S	Screen No. 1 - SC1	1981	75 tph/153,300 tpy	FE
009	9S	Screen No. 2 - SC2	1981	75 tph/153,300 tpy	FE
010	10S	Screen No. 3 - SC3	1981	75 tph/153,300 tpy	FE
011	11S	Screen No. 4 - SC4	1981	75 tph/153,300 tpy	FE
012	128	Belt Conveyor No. 4 - BC4	1981	75 tph/153,300 tpy	FE
013	13S	Belt Conveyor No. 5 - BC5	1981	75 tph/153,300 tpy	FE
014	14S	Belt Conveyor No. 6 - BC6	1981	75 tph/153,300 tpy	FE
015	15S	Belt Conveyor No. 7 - BC7	1981	75 tph/153,300 tpy	FE
016	16S	Belt Conveyor No. 8 - BC8	1981	75 tph/153,300 tpy	FE
017	17S	Belt Conveyor No. 9 - BC9	1981	75 tph/153,300 tpy	FE
018	18S	Covered Stockpile - CS1	1981	1,600 tons	FE
019	198	Drag Conveyor No. 1 - DC1	1981	75 tph/153,300 tpy	FE
020	208	Belt Conveyor No. 10 - BC10	1981	75 tph/153,300 tpy	FE
021	21S	Belt Conveyor No. 11 - BC11	1981	75 tph/153,300 tpy	FE
022	22S	Plant Bin - B2		75 tph/153,300 tpy	FE
023	23S	Belt Conveyor No. 12 - BC12		75 tph/153,300 tpy	FE
024	24S	Belt Conveyor No. 13 - BC13		75 tph/153,300 tpy	FE

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

ATTACHMENT D - Emission Units Table (includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms) Emission Emission **Emission Unit Description** Year Design Capacity Control Unit ID1 Point ID1 Installed/ Device1 Modified **Brick Forming** Pug Mill 1970 75 tph/153,300 tpy Vacuum Extruder 1970 75 tph/153,300 tpy Brick Trimming and Cutting 1970 FE 75 tph/153,300 tpy 025 258 Brick Setting Machine 1999 (Located 75 tph/153,300 tpy inside Sand Hopper – B3 1970 75 tph/153,300 tpy building) Sand Hopper - B4 1970 75 tph/153,300 tpy Sand Screw Conveyor - SSC 1970 75 tph/153,300 tpy Brick Warming, Drying, and Firing The Warming Room is heated by warm air from the operations of the Kilns and is not an emission source. NA NA Warming Room 1966 NA NA The Dryers are not sources on their own and are heated by cooling air from the Kilns 026 KIE Kiln No. 1 1966 8.25 tph fired/72,270 NA tpy fired DITE Dryer No. 1 1966 NA NA D12E Dryer No. 2 1966 NA NA 027 K2E Kiln No. 2 1971/1983 8.25 tph fired/72,270 NA tpy fired D21E Dryer No. 3 1971/1983 NA NA D22E Dryer No. 4 1971/1983 NA NA P-Kiln P-Kiln Periodic Kiln 2010 1 tpd fired/72 tpy fired NA

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

ATTACHMENT D - Emission Units Table (includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹
Coal Handl	ing, Grinding	g and Firing System			
028	28S	Covered Stockpile No. 2 - CS2	1984	500 tons	PE
029	29S	Coal Bin No. 1 - CB1	1984	30 tons	PE
030	30S	Coal Belt Conveyor No. 1 - CBC1	1984	100 tph/13,140 tpy	PE
031	31S	Coal Bin No. 2 - CB2	1984	12 tons	FE
032	32S	Coal Grinder/Pulverizer - CG	1984	1.5 tph/13,140 tpy	BAG
033	33S	Dense Phase Pump System - DPPS	1984	1.5 tph/13,140 tpy	BAG
034	34S	Coal Screw Conveyor No. 1 - CSC1	1984	1.5 tph/13,140 tpy	FE
035	35S	Coal Screw Conveyor No. 2 – CSC2	1984	1.5 tph/13,140 tpy	FE
036	36S	Coal Screw Conveyor No. 3 – CSC3	1984	1.5 tph/13,140 tpy	FE

Finished Brick Area

SM

NA

The Finished Brick Area includes the cooling, manual unloading of the brick cars, strapping, and waste brick conveyors. These are all fired brick being manually stacked and or conveyed on the waste brick conveyors. These are not considered sources due to the nature of the material.

1991

NA	WBC1	Waste Belt Conveyor No. 1	1991	50 tph/144,540 tpy	NA
NA	WBC2	Waste Belt Conveyor No. 2	1991	50 tph/144,540 tpy	NA
NA	VAC	Duovac PL52 Portable Vacuum	1991	850 ICFM	NA
Sand Dryer					
037	37S	Sand Dryer	NA	5 MM Btu/hr	N
038	38S	Sand Stockpile – OS2	NA	150 tons	N
039	398	Covered Sand Stockpile – CS3	NA	200 tons	PE

Sand is dried in an old round brick kiln with direct heat fired by natural gas.

Emergency Generator - NOT OPERATIONAL REQUEST REMOVAL FROM PERMIT

Brick Cube Strapping Machine

040	40S	Emergency Generator	1984	0.159 MM Btu/hr	N

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

50 tph/144,540 tpy

NA

ATTACHMENT D - Emission Units Table (includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 24 of the General Forms)

	7	,	om 2 . or the Gen	crai roims)	
Emission Unit ID ¹	Emission Point ID ¹	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ¹
Vehicle Act	ivity				
041	418	Vehicle Activity	NA	NA	N
Tanks					
042	42S	Brick Oil Tank – TK1	NA	6,000 gallons	N
043	43S	Fuel Tank – TK2	NA	6,000 gallons	N

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

ATTACHMENT E EMISSION UNIT FORM(S)

Emission Unit Description					
Emission unit ID number: 026	Emission unit name: Kiln No. 1, Dryers Nos. 1 and 2	List any control with this emiss None	ol devices associated ion unit:		
Provide a description of the emission Tunnel Kiln for firing brick. Kiln als	on unit (type, method of operation o provides heat for Dryers No. 1 and	, design parameters il No. 2.	s, etc.):		
Manufacturer: Constructed on Site	Model number: NA	Serial number:			
Construction date: 1966	Installation date:	Modification date(s): 1983			
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8.25 t	ons per hour of fired	l brick (TPH-F)		
Maximum Hourly Throughput: 8.25 TPH-F			Maximum Operating Schedule: 8,760 hours per year		
Fuel Usage Data (fill out all applicab	le fields)				
Does this emission unit combust fuel	? <u>X</u> Yes No	If yes, is it?			
***************************************		Indirect Fired	d X Direct Fired		
Maximum design heat input and/or r 0.0 MM BTU/HR (Estimated)	naximum horsepower rating:	North American I 4-A at 525,000 Bt	rating of burners: Burners Model 4441- tu/hr each for Natural 300,000 Btu/hr each		
ist the primary fuel type(s) and if ap the maximum hourly and annual fuel rimary fuels are natural gas and coal.	oplicable, the secondary fuel type(susage for each.	s). For each fuel ty	pe listed, provide		
escribe each fuel expected to be used	I during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	trace	NA	~1,000 BTU/CF		
Coal	1%	4%	~14,441 BTU/LB		

Emissions Data			
Criteria Pollutants	Pot	cential Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	9.90	43.36	
Nitrogen Oxides (NO _X)	4.21	18.43	
Lead (Pb)	NA	NA	
Particulate Matter (PM _{2.5})	7.18	31.44	
Particulate Matter (PM ₁₀)	11.55	50.59	
Total Particulate Matter (TSP)	14.85	65.04	
Sulfur Dioxide (SO ₂)	13.93	61.07	
Volatile Organic Compounds (VOC)	0.20	0.87	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
HF	14.93	65.40	
HCL	1.40	6.14	
HAPS (See Appendix)			
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
CO ₂ e	NA	32,799	

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.		Existing R30 Permit Condition	Name	Requirement
1	45CSR§7-3.1.	4.1.1.	Visible Emissions Limitation	Visible Emissions from each kiln stack shall not exceed twenty (20) percent opacity except as noted in 4.1.2. below.
2	45CSR§7-3.2.	4.1.2.	Visible Emissions Limitation Exclusion	The provisions of 4.1.1. above, shall not apply to smoke and/or particulate matter emitted from any process source operation which is less than forty (40) percent opacity for any period or periods aggregating no more than five (5) minutes in any sixty (60) minute period.
3	45CSR§7-4.3.	4.1.3	Prohibition Of Dilution of Stack Gases	The provisions of 45CSR7 shall not be circumvented by adding additional gas to any exhaust or group of exhausts for the purpose of reducing the stack gas concentration.
4	45CSR§7-4.7.	4.1.4	Allowance for Expansion	The increase of the operating process weight rate of any manufacturing process source operation or duplicate source operation by the operation of new, replacement, reactivated and/or altered source operation(s) shall be considered as an expansion and the allowable emission rates from the source operation(s) which resulted in the increase shall be determined as per 45CSR§7-4.4.
5	45CSR§7-4.12.	4.1.5.	Requirement for Proper Stack Testing	Any stack serving any process source operation or air pollution control equipment on any process source operation shall contain flow straightening devices or a vertical run of sufficient length to establish flow patterns consistent with acceptable stack sampling procedures.
6	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	Persons responsible for manufacturing process source operations from which hazardous particulate matter material may be emitted such as, but not limited to, lead, arsenic, beryllium and other such materials shall give the utmost care and consideration to the potential harmful effects of the emissions resulting from such activities. Evaluations of these facilities as to adequacy, efficiency and emission potential will be made on an individual basis by the Director working in conjunction with other appropriate governmental agencies.
7	45CSR§10-4.1.	4.1.7.	Sulfur Dioxide Exhaust Limit	Sulfur Dioxide emissions from each Kiln shall not exceed an instack concentration of 2000 ppm by volume.
3	45CSR§10-4.2.	4.1.8.	Averaging Time	Compliance with the allowable sulfur dioxide concentration limitations shall be based on a block three (3) hour averaging time.
	45CSR34, 40 CFR §63.52, 45CSR13, Permit No. R13- 0682 (Condition 4.1.8.)	4.1.9	NESHAP	The facility shall submit an Part I 112(j) application for case-by case MACT determination for the two tunnel kilns including the information required in 40 CFR§63.53(a), in accordance with the timeline specified in 40 CFR 63, Subpart B. All 112(j) applications must be submitted to both WVDEP-Division of Air Quality, and to the USEPA Region III at the following address: Chief of Permits and Technical Branch, US EPA Region III, Mail Code 3AP11, 1650 Arch Street, Philadelphia, PA, 19103-2029.

X Permit Shield

Applicable Requirements (Continued)

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	A STATE OF THE STA	Existing R30 Permit Condition	Name				I	Requiren	ient			
10	Permit No. R13-0682 (Condition 4.1.1.)	4.1.10.	Emissions	\top		Tunnel K	ilo 1 (K1E)	Tinnel K	Gin 2 (K2F)	Periodic 1	Kiln (P-K3E)	1
1	(Collation 4.1.1.)		Limitations			lb/hr	tox	lb/hr	toy	lb/br	tov	1
					PM	9.5	65.04	9.5	65.04	0.10	0.03	1
					PM	9.5	50.59	9.5	50.59	0.10	0.03	
					PMes	7.18	31.44	7.18	31.44	0.10	0.03	
	1				502	13.93	61.07	13.93	61.07	1.34	0.02	
	1				NO ₂	9.90	18.43	4.21	18.43	0.70	0.01	
					VOC	0.20	43.36 0.87	9.90 0.20	43.36 0.87	2.40	0.04	
					Non HE/HCI HAPs	0.07	0.32	0.07	0.87	0.05	0.01	
					HF	14.93	65.40	14.93	65.40	3.62	0.07	
					HC1	1.40	6.14	1.40	6.14	0.34	0.01	
11	45CSR13, Permit No. R13- 0682 (Condition 4.1.3.)	4.1.12	Production Limitation	Production from Tunnel Kiln 1 (K1E) shall not exceed 8.25 per hour nor 72,270 tons per year.				tons				
12	45CSR13, Permit No. R13- 0682 (Condition 4.1.4.)	4.1.13.	Production Limitation	P	Production from Tunnel Kiln 2 (K2E) shall not exceed 8.25 tons per hour nor 72,270 tons per year.							
13	45CSR13, Permit No. R13- 0682 (Condition 4.1.5.)	4.1.14.	Production Limitation	Production from Periodic Kiln (P-K3E) shall not exceed 2 tons per cycle (72 hours) nor 72 tons per year.								
14	45CSR13, Permit No. R13- 0682 (Condition 4.1.6.)	4.1.15.	Sulfur Content Limitation – Coal Fuel	Sulfur content of the coal used as fuel in the tunnel kilns shall not exceed 1%.								
15	[45CSR13, Permit No. R13- 0682 (Condition 4.1.7.)	4.1.16.	HF Limitation	HF emissions from the Kilns shall not exceed 902.7 micrograms of HF per gram of material fired. Compliance with this condition shall be demonstrated by testing the fluoride concentration of a brick both before and after firing. The concentration after firing shall be subtracted from the concentration before firing. This result shall then be multiplied by (18.998 +1.008)/18.998 in order to get the equivalent HF emissions. Compliance with this condition shall be determined by averaging all required tests from the previous 12 months (12 month rolling average).								
16	45CSR§30-5.1.c.	4.4.1.	Recordkeeping		e next row.	10111	ing avera	igc).				-
for the weather observation the	Is of all monitoring data documen ication number, the name or mear process, and, if applicable, all corr conditions (e.g., sunny, approximation be required to be performed requirements of 45CSR7A. For a ut of service" (O/S) or equivalent	rective measuretly 80°F, 6 per the require n emission uni	res taken or planned - 10 mph NE wind ments specified in	the shall shall	results of the Il be maintain ing the visual	check(s ned. The l emission	s), wheth permitton check	ner the vice shall (s). Sho	isible en also reco uld a vis	nissions ord the g sible em	are norn general ission	
7 4	45CSR§10-8.3.a.	4.4.2.	Maintain	A r	ecord of all re	equired	monitor	ing data	as estab	lished in	n the	

17	45CSR§10-8.3.a.	4.4.2.	Maintain Records	A record of all required monitoring data as established in the 45CSR10A monitoring plan shall be maintained on-site. Such records shall be made available to the Director or his duly authorized representative upon request and shall be retained on-site for a minimum of five years.
18	45CSR§\$10-8.3.c. & 8.3.d., 45CSR§30-5.1.c.	4.4.3.	Maintain Records	Records of the operating schedule and the quantity and quality of fuel consumed in each kiln shall be maintained on-site and made available to the Director or his duly authorized representative upon request. Such records may be maintained in electronic form and at a minimum for coal shall include but not limited to an ash, BTU, and sulfur analysis of each shipment.

X Permit Shield

Applicable Requirements (Continued)

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

Ref No.	Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Requirement
19	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Any violation(s) of the allowable visible emission requirement for any emission source discovered during observations using 45CSR7A, must be reported in writing to the Director of the Division of Air Quality as soon as practicable but within ten (10) calendar days of the occurrence. The report shall include at a minimum, the following information: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
20	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	A periodic exception report shall be submitted to the Director, in a manner specified by the Director. Such an exception report shall provide details of all excursions outside the range of measured emissions or monitored parameters established in an approved monitoring plan and shall include, but not be limited to, the time of the excursion, the magnitude of the excursion, the duration of the excursion, the cause of the excursion and the corrective action taken.

* * *	-		~ 1 .	
Y	Peri	mit	hi	2/0
1	1 6/1	1111	DIIII	su

Ref No.	Pliance. If there is not already a requ Rule/ Regulation/ R13 Permit	Existing R30 Permit Condition	Name	Method of Compliance
1	45CSR§7-3.1.	4.1.1.	Visible Emissions Limitation	4.3.1. –See Below
ligh emisor fi least kiln chec sour requ at a	1. To demonstrate compliance with the opacity limited emissions. At a minimum, the observer musting, observer position relative to lighting, wind, saions. This training may be obtained from written from the lecture portion of the 40CFR Part 60, April once per calendar month with a maximum of for stack for a sufficient time interval, but no less the ks shall be performed during periods of normal face(s) for three (3) consecutive monthly checks, the irements of 45CSR7A as soon a practicable, but we source(s) restarts the count of the number of consecutive R§7A-2.1., 45CSR§30-5.1.c.]	t be trained and kn and the presence materials found in pendix A, Method ty-five (45) days be an one (1) minute ucility operation and the permittee shall co ithin seventy-two (nowledgeable regarding of uncombined water (the References 1 and 2 f 9 certification course. Verween consecutive readily, to determine if any viry to dappropriate weather of conduct an opacity readily 12) hours of the final visit	the effects of background contrast, amicondensing water vapor) on the visibility from 40CFR Part 60, Appendix A, Methody is the emission checks shall be conducted ings. These checks shall be performed at the emissions are present. Visible emissions are present in that source(s) using the procedures and at that source(s) using the procedures and emission check. A 45CSR7A observations are present that source(s) using the procedures and emission check. A 45CSR7A observations are present that source(s) using the procedures and emission check.
		4.1,2.	Limitation Exclusion	4.3.1. –See Above
3	45CSR§7-4.3.	4.1.3	Prohibition Of Dilution of Stack Gases	NA
4	45CSR§7-4.7.	4.1.4	Allowance for Expansion	NA
5	45CSR§7-4.12.	4.1.5.	Requirement for Proper Stack Testing	
5	45CSR§7-4.13.	4.1.6	Potential Hazardous Material Emissions	
	45CSR§10-4.1.	4.1.7.	Sulfur Dioxide Exhaust Limit	4.2.1. Compliance with the sulfur diox limitations shall be determined by exceeding the maximum sulfur cont percentages as listed in Table 2 of DAQ approved "45CSR10 Monitor. Plan" attached in Appendix A of t permit and through fuel analysis outlined in the aforemention monitoring plan. [45CSR§10-8.2.c.]
	45CSR§10-4.2.	4.1.8.	Averaging Time	4.2.1 - See Above
	45CSR34, 40 CFR §63.52, 45CSR13, Permit No. R13-0682 (Condition 4.1.8.)	4.1.9	NESHAP	Submit when requested.
)	Permit No. R13-0682 (Condition 4.1.1.)	4.1.10.	Emissions Limitations	4.3.2. – See Below
cord prov suand rmit.	Tests to determine the compliance of Kiln No.1 (weight emission standards (in lbs/hr) shall be contained with the appropriate method set forth in 45Cs and by the Secretary and in accordance with section the date of this permit, initial tests shall be conducted at the conduct of the results of such tests shall be submitted within R§7-8.1., 45CSR§7A-3.1.]	nducted at least on SR§7A-3. – "Mass in 3.3. of this permited and completed	ce in every five (5) yea Emission Test Procedure t. Unless tests have been within one hundred eig	ar period. Such tests shall be conducted es" or other equivalent EPA testing meth- a completed within one (1) year prior to t hty (180) days of the effective date of the

Applicable Requirements (Continued)

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

Ref No.		Existing R30 Permit Condition	Name	Method of Compliance
11	45CSR13, Permit No. R13-0682 (Condition 4.1.3.)]	4.1.12	Production Limitation	4.4.4. In order to determine compliance with Conditions 4.1.10 through 4.1.14, the Permittee shall monitor and record the production of each of the three kilns on a monthly basis. [45CSR13, Permit No. R13-0682 (Condition 4.3.4.)]
12	45CSR13, Permit No. R13-0682 (Condition 4.1.4.)	4.1.13.	Production Limitation	4.4.4. – See Above
13	45CSR13, Permit No. R13-0682 (Condition 4.1.5.)	4.1.14.	Production Limitation	4.4.4. – See Above
14	45CSR13, Permit No. R13-0682 (Condition 4.1.6.)	4.1.15.	Sulfur Content Limitation – Coal Fuel	4.3.4. In order to determine compliance with Condition 4.1.15 of this permit, the permittee shall maintain statements made by fuel suppliers guaranteeing that the sulfur content of the coal is less than or equal to 1%. 345CSR13, Permit No. R13-0682 (Condition 4.2.2.)]
15	[45CSR13, Permit No. R13-0682 (Condition 4.1.7.)	4.1.16.	HF Limitation	4.3.3. In order to determine compliance with Condition 4.1.16 of this permit, the permittee shall perform or have performed appropriate laboratory tests to determine the fluoride content of the bricks both before and after firing at least once for every 12,000 tons of production. [45CSR13, Permit No. R13-0682 (Condition 4.2.1.)]
16	45CSR§30-5.1.c.	4.4.1.	Recordkeeping	Maintain Records as Required
17	45CSR§10-8.3.a.	4.4.2.	Maintain Records	Maintain Records as Required
18	45CSR§§10-8.3.c. & 8.3.d., 45CSR§30-5.1.c.	4.4.3.	Maintain Records	Maintain Records as Required
19	45CSR§30-5.1.c.	4.5.1.	VE Emissions	Maintain Records as Required
20	45CSR§10-8.3.b.	4.5.2.	Periodic Exception Report	Report as Required

Are you in compliance with all applicable requirements for this emission unit?	_X_	Yes	No	
If no, complete the Schedule of Compliance Form as ATTACHMENT F.				

ATTACHMENT E - Emission Unit Form					
Emission Unit Description					
Emission unit ID number: 027					
Provide a description of the emissic Tunnel Kiln for firing brick. Kiln als	on unit (type, method of operation operation operation provides heat for Dryers No. 3 and	design parameters d No. 4.	, etc.):		
Manufacturer: Constructed on Site	Model number: NA	Serial number: NA			
Construction date: 1971 Installation date: 1971 Modification date(s): 1983			te(s):		
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 8.25	tons per hour of fired	brick (TPH-F)		
Maximum Hourly Throughput: 8.25 TPH-F Maximum Annual Throughput: 72,270 TPY-F			Maximum Operating Schedule: 8,760 hours per year		
Fuel Usage Data (fill out all applicab	ele fields)				
Does this emission unit combust fuel	? <u>X</u> Yes No	If yes, is it?			
		Indirect Fired	X Direct Fired		
Maximum design heat input and/or maximum horsepower rating: 30.0 MM BTU/HR (Estimated) Type and Btu/hr rating of bur North American Burners Model 4-A at 525,000 Btu/hr each for N Gas Coal Burners 300,000 Btu/h 90 total burners.					
List the primary fuel type(s) and if apthe maximum hourly and annual fuel Primary fuels are natural gas and coal.	oplicable, the secondary fuel type lusage for each.	(s). For each fuel ty	pe listed, provide		
Describe each fuel expected to be used	d during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	trace	NA	~1,000 BTU/CF		
Coal	1%	4%	~14,441 BTU/LB		

Emissions Data			
Criteria Pollutants	Poter	ntial Emissions	
	PPH	TPY	
Carbon Monoxide (CO)	9.90	43.36	
Nitrogen Oxides (NO _X)	4.21	18.43	
Lead (Pb)	NA	NA	
Particulate Matter (PM _{2.5})	7.18	31.44	
Particulate Matter (PM ₁₀)	11.55	50.59	
Total Particulate Matter (TSP)	14.85	65.04	
Sulfur Dioxide (SO ₂)	13.93	61.07	
Volatile Organic Compounds (VOC)	0.20	0.87	
Hazardous Air Pollutants	Potential Emissions		
	РРН	TPY	
HF	14.93	65.40	
HCL	1.40	6.14	
HAPS (See Appendix)			
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
CO ₂ e	NA	32,799	

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

Applica	ble Requirements
permit c	applicable requirements for this emission unit. For each applicable requirement, include the ing rule/regulation citation and/or construction permit with the condition number. (Note: Title V ondition numbers alone are not the underlying applicable requirements). If an emission limit is ed based on the type of source and design capacity or if a standard is based on a design parameter, rmation should also be included.
See Page	E3 through E5.
X Pern	nit Shield
or citation complianc	plicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall demonstrate compliance. If the method is based on a permit or rule, include the condition number. (Note: Each requirement listed above must have an associated method of demonstrating e. If there is not already a required method in place, then a method must be proposed.) 6 through E7.
Are you in co	ompliance with all applicable requirements for this emission unit? X Yes No
	te the Schedule of Compliance Form as ATTACHMENT F.

Emission Unit Description Emission unit ID number: P-Kiln Provide a description of the emis Periodic Kiln for firing brick.	Emission unit name: Periodic Kiln sion unit (type, method of operation,	with this emissi	
Provide a description of the emis Periodic Kiln for firing brick.	sion unit (type, method of operation,	design parameters	ota):
			, e.c
Manufacturer: No Manufacturer	Model number: NA	Serial number:	
Construction date: JA	Installation date: 2010	Modification da NA	te(s):
faximum Hourly Throughput:	Maximum Annual Throughput: 72 TPY-F	Maximum Oper. 8,760 hours per y	ating Schedule:
uel Usage Data (fill out all applic	able fields)		
oes this emission unit combust fu	nel? X Yes No	If yes, is it? Indirect Fired	X Direct Fired
aximum design heat input and/o	r maximum horsepower rating:		rating of burners:
st the primary fuel type(s) and if e maximum hourly and annual fo tural Gas Only	applicable, the secondary fuel type(suel usage for each.	s). For each fuel ty	pe listed, provide
scribe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	trace	NA	~1,000 BTU/CF

Emissions Data		
Criteria Pollutants	Poter	ntial Emissions
	РРН	TPY
Carbon Monoxide (CO)	2.40	0.04
Nitrogen Oxides (NO _X)	0.70	0.01
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	1.74	0.03
Particulate Matter (PM ₁₀)	1.74	0.03
Total Particulate Matter (TSP)	1.92	0.03
Sulfur Dioxide (SO ₂)	1.34	0.02
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potent	tial Emissions
	PPH	TPY
HF	3.62	0.07
HCL	0.34	0.01
HAPS (See Appendix)		
	9	
Regulated Pollutants other than	Potenti	al Emissions
Criteria and HAP	PPH	TPY
CO ₂ e	NA	2

AP-42, Section 11.3, Brick and Structural Clay Product Manufacturing.

Applicable Requirements	
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: T permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parametris information should also be included.	itle V
See Page E3 through E5.	
X Permit Shield	
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which be used to demonstrate compliance. If the method is based on a permit or rule, include the condition or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) See Page E6 through E7.	ch shall number
Are you in compliance with all applicable requirements for this emission unit? X Yes No	
If no, complete the Schedule of Compliance Form as ATTACHMENT F.	
DIA CDIC	

A	ATTACHMENT E - Emission U	Jnit Form	
Emission Unit Description Brick	Forming		
Emission unit ID number: 025	Emission unit name: Brick Forming	List any control with this emissio	devices associated n unit:
Brick forming includes the pug mi	ssion unit (type, method of operation, ill, vacuum extruder, brick trimming and s to pug mill), Sand Hopper (B3), Sand	d cutting (including sc	ran brick helt
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: 1970	Installation date:	Modification date	r(s):
1999 for brick setting machine	1999 for brick setting machine		
Design Capacity (examples: furnations) Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300 tpy	Maximum Operat 8,760 hours per yea	ing Schedule:
Fuel Usage Data (fill out all applic	cable fields)		
Does this emission unit combust fu	uel?Yes X No	If yes, is it? Indirect Fired	Direct Fired
Maximum design heat input and/o	or maximum horsepower rating:	Type and Btu/hr ra	
List the primary fuel type(s) and if the maximum hourly and annual f	f applicable, the secondary fuel type(suel usage for each.	s). For each fuel type	listed, provide
Describe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Criteria Pollutants	Potent	ial Emissions
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.18	0.77
Particulate Matter (PM ₁₀)	1.26	5.52
Total Particulate Matter (TSP)	2.52	11.04
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	al Emissions
	PPH	TPY
Regulated Pollutants other than Criteria and HAP	Potential	Emissions
Criteria and map	РРН	TPY

Applicable Requirements	
List all applicable requirements for this emission unit. For each applicable requirement, includerlying rule/regulation citation and/or construction permit with the condition number. (I permit condition numbers alone are not the underlying applicable requirements). If an emission calculated based on the type of source and design capacity or if a standard is based on a design this information should also be included.	Note: Title V
None - Compliance with limitations on kilns proves compliance on remaining portions of the facili	ty.
X Permit Shield	
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reportive used to demonstrate compliance. If the method is based on a permit or rule, include the conformation. (Note: Each requirement listed above must have an associated method of demonstrate compliance. If there is not already a required method in place, then a method must be propose	dition number
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility	
re you in compliance with all applicable requirements for this emission unit? X Yes No	
no, complete the Schedule of Compliance Form as ATTACHMENT F.	

	ATTACHMENT E - Emission U	nit Form	
Emission Unit Description Eme	rgency Generator REQUESTED TO	BE REMOVED	
Emission unit ID number: 040	Emission unit name: Emergency Generator	List any control with this emission	devices associated on unit:
Provide a description of the em Generac 1.3 L natural gas fired en	ission unit (type, method of operation, nergency generator for operations of the	design parameters, control room for the	etc.): tunnel kilns.
Manufacturer: Generac	Model number: 1.3L	Serial number: NA	
Construction date: 1984	Installation date:	Modification date	e(s):
Design Capacity (examples: furn	aces - tons/hr, tanks - gallons): 1.3 Lit	ter	
Maximum Hourly Throughput: N/A	Maximum Annual Throughput: N/A	Maximum Opera 500 hrs/yr	ting Schedule:
Fuel Usage Data (fill out all appli	cable fields)		
Does this emission unit combust i	uel? X Yes No	If yes, is it?	
		Indirect Fired	X Direct Fired
Maximum design heat input and/ 159,000 Btu/hr; 79.5 MMBtu/year	or maximum horsepower rating:	Type and Btu/hr r N/A	ating of burners:
List the primary fuel type(s) and in the maximum hourly and annual statural Gas	f applicable, the secondary fuel type(s) fuel usage for each.). For each fuel type	e listed, provide
Fuel Type	Max. Sulfur Content	M 110	
Natural Gas	Trace	Max. Ash Content NA	BTU Value
	Titlee	NA .	~1,000 Btu/cf

Criteria Pollutants	Potentia	al Emissions
	РРН	TPY
Carbon Monoxide (CO)	0.0504	0.0126
Nitrogen Oxides (NO _X)	0.6487	0.1622
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	0.0001	0.0001
Particulate Matter (PM ₁₀)	0.0016	0.0004
Total Particulate Matter (TSP)	0.0016	0.0004
Sulfur Dioxide (SO ₂)	0.0001	0.0001
Volatile Organic Compounds (VOC)	0.0188	0.0047
Hazardous Air Pollutants	Potential	Emissions
	PPH	TPY
/OC HAPS	0.00114	0.0029
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY

AP-42, Section 3.2, Table 3.2-2.

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None
Are you in compliance with all applicable requirements for this emission unit? X Yes No
If no, complete the Schedule of Compliance Form as ATTACHMENT F.

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description Sand Di	yer		
Emission unit ID number: 037	Emission unit name: Sand Dryer	List any control with this emission	devices associated on unit:
		None	
Provide a description of the emissic Sand is dried in an old round brick ki operation.	on unit (type, method of operation, ln to remove excess moisture prior to	design parameters, design utilized in the	etc.): brick making
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: Early 1900's	Installation date: Early 1900's	Modification date	e(s):
Design Capacity (examples: furnace	es - tons/hr, tanks - gallons): NA		
Maximum Hourly Throughput: NA	Maximum Annual Throughput: 120 tons	Maximum Operat 8,760 hrs/yr	ting Schedule:
Fuel Usage Data (fill out all applicab	le fields)		
Does this emission unit combust fuel	? X Yes No	If yes, is it?	
		Indirect Fired	X Direct Fired
Maximum design heat input and/or i 5 MM Btu/hr, 43,800 MMBtu/year	naximum horsepower rating:	Type and Btu/hr rest burners 1 MM Btu/hr each	ating of burners:
ist the primary fuel type(s) and if aphe maximum hourly and annual fuel	oplicable, the secondary fuel type(s) usage for each.	. For each fuel type	listed, provide
Jatural Gas			
escribe each fuel expected to be used	during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	Trace	NA	~1,000 Btu/cf

Emissions Data		
Criteria Pollutants	Po	tential Emissions
	РРН	TPY
Carbon Monoxide (CO)	0.42	1.84
Nitrogen Oxides (NO _X)	0.50	2.19
Lead (Pb)	NA	NA
Particulate Matter (PM _{2.5})	0.04	0.17
Particulate Matter (PM ₁₀)	0.04	0.17
Total Particulate Matter (TSP)	0.04	0.17
Sulfur Dioxide (SO ₂)	0.01	0.02
Volatile Organic Compounds (VOC)	0.03	0.13
Hazardous Air Pollutants	Pote	ential Emissions
	РРН	TPY
VOC HAPS	0.01	0.05
Metal HAPs	0.01	0.01
Regulated Pollutants other than Criteria and HAP	Poter	ntial Emissions
Criteria and HAP	PPH	TPY
CO ₂ e	NA	2,634

AP-42, Section 1.4, Table 1.4-1 and 1.4-2.

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
V Downit Chield
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F.

	TACHMENT E - Emission U		
Emission Unit Description Shale G	rinding and Screening		
Emission unit ID number: 006, 008 to 011	Emission unit name: Various (See Attachment D)	List any control with this emission	devices associate n unit:
Provide a description of the emissi Crusher and screens (4 screens) local material size. Crusher is a Steadman 89075. The screens are fine screens	on unit (type, method of operation, ted in the grinding building which red in Grand Slam Impact Crusher, Model.	duces the shale to appr	oximately -6 mech
Manufacturer: Various, See Above	Model number: Various, See Above	Serial number: Various, See Abov	e
Construction date: 006 was replaced in 2006	Installation date: 006 was replaced in 2006	Modification date	(s):
008 to 011 - 1981	008 to 011 - 1981		
Design Capacity (examples: furnace Maximum Hourly Throughput: 75 tph	Maximum Annual Throughput: 153,300 tpy	Maximum Operation 4,160 hours per year	ing Schedule:
Fuel Usage Data (fill out all applicat	ole fields)		
Ooes this emission unit combust fuel	?Yes X No	If yes, is it?Indirect Fired	Diagram Pi 1
Maximum design heat input and/or i	maximum horsepower rating:	Type and Btu/hr ra	
ist the primary fuel type(s) and if a ne maximum hourly and annual fue	pplicable, the secondary fuel type(s I usage for each.). For each fuel type	listed, provide
escribe each fuel expected to be used	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Criteria Pollutants	Potential Emissions	
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.60	0.61
Particulate Matter (PM ₁₀)	4.80	4.91
Total Particulate Matter (TSP)	9.30	9.50
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	l Emissions
	PPH	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY
ist the method(s) used to calculate the pote	ential emissions (include dates	of any stack tests conducted,
ersions of software used, source and dates	of emission factors, etc.).	<u>*</u>
P-42, Section 11.3, Table 11.3.1.		
The state of the s		

Applicable Requirements		
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.		
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
_X Permit Shield		
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which sha be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.	ll r	
Are you in compliance with all applicable requirements for this emission unit? X Yes No		

Emission Unit Description Conv	eyor and Equipment Transfer Points		
Emission unit ID number: 003 to 005, 007, 012 to 017, 019 to 021, 023, and 024	Emission unit name: Various Conveyors (See Attachment D)	List any control with this emissio Enclosures	devices associate n unit:
Provide a description of the emi Conveyors on the raw feed, grindi ransfers.	ssion unit (type, method of operation, ing building, and plant feed system and e	design parameters, e equipment transfer poi	etc.): nts for shale
Manufacturer: JA	Model number: NA	Serial number:	
Construction date: 981	Installation date:	Modification date	(s):
esign Capacity (examples: furnations) [aximum Hourly Throughput: tph]	Maximum Annual Throughput: 153,300 tpy	Maximum Operati 8,760 hours per yea	ing Schedule:
uel Usage Data (fill out all applic	cable fields)		
pes this emission unit combust for		If yes, is it?Indirect Fired	Direct Fired
aximum design heat input and/o	or maximum horsepower rating:	Type and Btu/hr ra	
t the primary fuel type(s) and it maximum hourly and annual f	f applicable, the secondary fuel type(s). For each fuel type	listed, provide
cribe each fuel expected to be u	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Potential Emissions	
	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.02	0.02
Particulate Matter (PM ₁₀)	0.16	0.16
Total Particulate Matter (TSP)	0.34	0.34
fulfur Dioxide (SO ₂)		
olatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	l Emissions
	РРН	TPY
Regulated Pollutants other than Criteria and HAP	Potential	Emissions
Criteria and HAP	PPH	TPY
st the method(s) used to calculate the potrsions of software used, source and dates	tential emissions (include dates of emission factors, etc.).	of any stack tests conducted,

Applicable Requirements	
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter this information should also be included.	
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.	
X Permit Shield	
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which she used to demonstrate compliance. If the method is based on a permit or rule, include the condition numb or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)	ıll er
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.	
Are you in compliance with all applicable requirements for this emission unit? X Yes No	_
If no, complete the Schedule of Compliance Form as ATTACHMENT F.	

	ATTACHMENT E - Emission	Unit Form	
Emission Unit Description Sh	ale Storage		
Emission unit ID number: 001, 002, 018, 022	Emission unit name: Various	List any control with this emissio	devices associate n unit:
Provide a description of the et 001, Open Stockpile No. 1 for of Grinding Building; and 022, Pla	mission unit (type, method of operatio quarried shale storage; 002 Truck-Endloa ant Bin.	n, design parameters, eader Fed Bin; 018, Cove	etc.): red Stockpile in
Manufacturer: NA	Model number: NA	Serial number:	
Construction date:	Installation date:	Modification date	(s):
Maximum Hourly Throughput 75 tph	: Maximum Annual Throughput 153,300	: Maximum Operat 8,760	ing Schedule:
Fuel Usage Data (fill out all app	olicable fields) NA		
Does this emission unit combust	t fuel?Yes No	If yes, is it? Indirect Fired	Direct Fired
Taximum design heat input and	d/or maximum horsepower rating:	Type and Btu/hr ra	
ist the primary fuel type(s) and ne maximum hourly and annua	I if applicable, the secondary fuel type I fuel usage for each.	e(s). For each fuel type	listed, provide
escribe each fuel expected to be	e used during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
			-

Emissions Data		
Criteria Pollutants	Potential Emissions	
	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	0.05	0.23
Particulate Matter (PM ₁₀)	0.34	1.50
Total Particulate Matter (TSP)	0.72	3.18
fulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential	l Emissions
	РРН	TPY
Regulated Pollutants other than	Potential	Emissions
Criteria and HAP	РРН	
	1111	TPY
st the method(s) used to calculate the prisions of software used, source and date 2-42, Stockpile Equation, See attached ca	es of emission factors, etc.).	of any stack tests conducted,

	Applicable Requirements		
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.		
	None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
-			
-	X Permit Shield		
	For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)		
	None - Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
A	re you in compliance with all applicable requirements for this emission unit? X YesNo		
If	no, complete the Schedule of Compliance Form as ATTACHMENT F.		

A	TTACHMENT E - Emission U	nit Form	
Emission Unit Description Coal C	Crushing		
Emission unit ID number: 032	Emission unit name:	List any control with this emission	devices associated n unit:
Provide a description of the emiss Coal crusher	sion unit (type, method of operation,		etc.):
Manufacturer: Atritor	Model number: NA	Serial number: NA	
Construction date:	Installation date:	Modification date	(s):
Design Capacity (examples: furnac	ces - tons/hr, tanks - gallons): 100 tp	h	
Maximum Hourly Throughput: 1.5 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operat 8,760 hours per yea	ing Schedule:
Fuel Usage Data (fill out all applica	ible fields)		
Does this emission unit combust fu	el?Yes X No	If yes, is it? Indirect Fired	Direct Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	
		-	
ist the primary fuel type(s) and if a ne maximum hourly and annual fu	applicable, the secondary fuel type(s) el usage for each.). For each fuel type	listed, provide
escribe each fuel expected to be use	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Criteria Pollutants	Potential Emissions	
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	1.95	8.54
Particulate Matter (PM ₁₀)	1.95	8.54
Total Particulate Matter (TSP)	2.16	9.46
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential Emissions	
	РРН	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY

AP-42, Section, Table 11.24-2

Applicable Requirements		
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.		
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
_X Permit Shield		
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)		
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
Are you in compliance with all applicable requirements for this emission unit? X Yes No		
If no, complete the Schedule of Compliance Form as ATTACHMENT F.		

	ATTACHMENT E - Emission U			
Emission Unit Description Coal	Conveying and Equipment Transfer I	Points		
Emission unit ID number: 030, 034, 035, 036	Emission unit name: Various	List any control devices associated with this emission unit:		
	ission unit (type, method of operation, coal bin and transfer points for the coal		tc.):	
Manufacturer: NA	Model number: NA	Serial number: NA		
Construction date:	Installation date:	Modification date(s): NA		
Design Capacity (examples: furn	naces - tons/hr, tanks - gallons): 100 tp	ph		
Maximum Hourly Throughput: 1.5 to 100 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operating Schedule: 8,760 hours per year		
Fuel Usage Data (fill out all appli	icable fields)			
Does this emission unit combust fuel?Yes X No		If yes, is it?		
		Indirect Fired	Direct Fired	
Maximum design heat input and/	or maximum horsepower rating:	Type and Btu/hr ra	ting of burners:	
List the primary fuel type(s) and the maximum hourly and annual	if applicable, the secondary fuel type(s fuel usage for each.	s). For each fuel type	listed, provide	
Describe each fuel expected to be	used during the term of the permit.		130 300 100	
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
Accordance to the second secon				

PPH TPY Carbon Monoxide (CO) Ititrogen Oxides (NO _X) ead (Pb) articulate Matter (PM _{2.5}) otal Particulate Matter (TSP) otal Potential Emissions PPH TPY	Emissions Data			
Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Poly articulate Matter (PM ₁₀) Potential Emissions	Criteria Pollutants	Potential Emissions		
Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀) Particulate Matter (PM ₁₀) Potal Particulate Matter (TSP) O.22 O.02 Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH Regulated Pollutants other than Criteria and HAP		РРН	TPY	
Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀) Particulate Matter (PM ₁₀) Potal Particulate Matter (TSP) O.22 O.02 Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH Regulated Pollutants other than Criteria and HAP	Carbon Monoxide (CO)			
Particulate Matter (PM ₁₀) O.10 O.01 Fotal Particulate Matter (TSP) O.22 O.02 Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH TPY Regulated Pollutants other than Criteria and HAP	Nitrogen Oxides (NO _X)			
Particulate Matter (PM ₁₀) O.10 O.01 Fotal Particulate Matter (TSP) O.22 O.02 Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH TPY Regulated Pollutants other than Criteria and HAP	Lead (Pb)			
Total Particulate Matter (TSP) 0.22 0.02 Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH TPY Regulated Pollutants other than Criteria and HAP	Particulate Matter (PM _{2.5})	0.016	0.002	
Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Potential Emissions PPH TPY Regulated Pollutants other than Criteria and HAP	Particulate Matter (PM ₁₀)	0.10	0.01	
A Potential Emissions Phy Potential Emissions Phy Regulated Pollutants other than Criteria and HAP Potential Emissions Potential Emissions Potential Emissions	Total Particulate Matter (TSP)	0.22	0.02	
Hazardous Air Pollutants PH TPY Regulated Pollutants other than Criteria and HAP	Sulfur Dioxide (SO ₂)			
Regulated Pollutants other than Criteria and HAP	Volatile Organic Compounds (VOC)			
Regulated Pollutants other than Criteria and HAP Potential Emissions	Hazardous Air Pollutants	Potential Emissions		
Regulated Pollutants other than Criteria and HAP Potential Emissions		РРН	TPY	
Criteria and HAP				
Criteria and HAP				
Criteria and HAP				
Criteria and HAP				
Criteria and HAP		Potential Emissions		
	Criteria and HAP			

st the method(s) used to calculate the potential emissions (include dates of any stack tests conducted,				
rsions of software used, source and dates of emission factors, etc.).	72, Section 13.2.4.			
P-42, Section 13.2.4.				

	Applicable Requirements		
	List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.		
	None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
L	X Permit Shield		
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)			
	None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.		
A	re you in compliance with all applicable requirements for this emission unit? X Yes No		
If	If no, complete the Schedule of Compliance Form as ATTACHMENT F.		

AT	TACHMENT E - Emission U	nit Form	
Emission Unit Description Coal St	orage		
Emission unit ID number: 028, 029, 031	Emission unit name: Coal Storage	List any control of with this emission	devices associated unit:
Provide a description of the emissi Coal stockpile and coal bins.	on unit (type, method of operation,	design parameters, e	tc.):
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: 1984	Installation date: 1984	Modification date	(s):
Design Capacity (examples: furnac	es - tons/hr, tanks - gallons): 1.5 to	100 tph	
Maximum Hourly Throughput: 1.5 to 100 tph	Maximum Annual Throughput: 13,140 tpy	Maximum Operati 8,760 hours per year	
Fuel Usage Data (fill out all applica	ble fields)	1	
Does this emission unit combust fue	l?Yes X No	If yes, is it?Indirect Fired	Direct Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:
List the primary fuel type(s) and if a he maximum hourly and annual fue	pplicable, the secondary fuel type(s) el usage for each.). For each fuel type	listed, provide
Pescribe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Potent	ial Emissions
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
ead (Pb)		
articulate Matter (PM _{2.5})	See Convey	ving and Transfer
articulate Matter (PM ₁₀)		
otal Particulate Matter (TSP)		
ulfur Dioxide (SO ₂)		
olatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potentia	al Emissions
	РРН	TPY
Regulated Pollutants other than	Potential	Emissions
Criteria and HAP	PPH	TPY
t the method(s) used to calculate the sions of software used, source and da	potential emissions (include dates tes of emission factors, etc.).	of any stack tests conducted,

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? _X_YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F.

A	TTACHMENT E - Emission U	Jnit Form	
Emission Unit Description Vehic	le Activity		
Emission unit ID number: 041	Emission unit name: Vehicle Activity	List any control with this emissio Water Roadways	devices associated n unit:
Provide a description of the emis Roadways at the site for quarry to endloader activity to feed the shale	sion unit (type, method of operation, stockpile (pit road), delivery of materia to the grinding building.	design parameters, eals, shipment/sales of b	etc.): rick, and the
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: NA	Installation date: NA	Modification date	(s):
Design Capacity (examples: furna	ces - tons/hr, tanks - gallons): NA		
Maximum Hourly Throughput: See Calculations	Maximum Annual Throughput: See Calculations	Maximum Operat 8,760 hours per yea	ing Schedule:
Fuel Usage Data (fill out all applic	able fields)		
Does this emission unit combust fu	el?Yes X No	If yes, is it? Indirect Fired	Direct Fined
Maximum design heat input and/or maximum horsepower rating:		Type and Btu/hr ra	Direct Fired
ist the primary fuel type(s) and if ne maximum hourly and annual fu	applicable, the secondary fuel type(s nel usage for each.). For each fuel type	listed, provide
escribe each fuel expected to be us	sed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Criteria Pollutants	Potential Emissions	
	РРН	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)	<u> </u>	
Particulate Matter (PM _{2.5})	0.65	0.73
Particulate Matter (PM ₁₀)	6.45	7.11
Total Particulate Matter (TSP)	22.54	24.84
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potential Emissions	
	РРН	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	РРН	TPY

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition numbe or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
Are you in compliance with all applicable requirements for this emission unit? X Yes No
If no, complete the Schedule of Compliance Form as ATTACHMENT F.

A	TTACHMENT E - Emission U	nit Form	
Emission Unit Description Sand S	torage		
Emission unit ID number: 038 and 039	Emission unit name: Sand Storage (OS2 and CS3)	List any control with this emissio OS2-N, CS3-FE	devices associat n unit:
Provide a description of the emiss Sand stockpiles	ion unit (type, method of operation,	design parameters, e	etc.):
Manufacturer: NA	Model number: NA	Serial number: NA	
Construction date: NA	Installation date: NA	Modification date	(s):
Maximum Hourly Throughput:	Maximum Annual Throughput: 200	Maximum Operat. 8,760 hours per yea	ing Schedule:
Fuel Usage Data (fill out all applica	ble fields)		
oes this emission unit combust fue	I?Yes X No	If yes, is it?Indirect Fired	D:
laximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	Direct Fired
ist the primary fuel type(s) and if a e maximum hourly and annual fue	applicable, the secondary fuel type(s)). For each fuel type	listed, provide
scribe each fuel expected to be use	d during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value

Emissions Data		
Criteria Pollutants	Pote	ntial Emissions
	PPH	TPY
Carbon Monoxide (CO)		
Nitrogen Oxides (NO _X)		
Lead (Pb)		
Particulate Matter (PM _{2.5})	Covered stockpiles and sand stockpiles are assumed to have no emis	
Particulate Matter (PM ₁₀)		
Total Particulate Matter (TSP)		
Sulfur Dioxide (SO ₂)		
Volatile Organic Compounds (VOC)		
Hazardous Air Pollutants	Potent	tial Emissions
	РРН	TPY
Regulated Pollutants other than	Potential Emissions	
Criteria and HAP	PPH	TPY
ist the method(s) used to calculate t	he potential emissions (include date	es of any stack tasts conducted
ersions of software used, source and	dates of emission factors, etc.).	es of any stack tests conducted,
A		

	Applicable Requirements
X Permit Shield For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.	permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter.
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) None – Compliance with limitations on kilns proves compliance on remaining portions of the facility. Are you in compliance with all applicable requirements for this emission unit? _X_YesNo	None – Compliance with limitations on kilns proves compliance on remaining portions of the facility.
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) None – Compliance with limitations on kilns proves compliance on remaining portions of the facility. Are you in compliance with all applicable requirements for this emission unit? _X_YesNo	
Are you in compliance with all applicable requirements for this emission unit? X YesNo	_X Permit Shield
Are you in compliance with all applicable requirements for this emission unit? <u>X</u> Yes <u>N</u> O	or citation. (Note: Each requirement listed above must have an associated method of demonstrating
	None - Compliance with limitations on kilns proves compliance on remaining portions of the facility.
f no, complete the Schedule of Compliance Form as ATTACHMENT F.	Are you in compliance with all applicable requirements for this emission unit? X Yes No
	f no, complete the Schedule of Compliance Form as ATTACHMENT F.

ATTACHMENT F SCHEDULE OF COMPLIANCE FORM

AI	TACHMENT F - S	Schedule of Compliance Form
reason(s) for noncompliance, a decompliance. If there is a consent	ssion unit which is n escription of how the order that applies to	with any of the applicable requirements identified in the ot in compliance, identify the applicable requirement, the source will achieve compliance, and a detailed schedule of this requirement, attach a copy to this form.
	4.1.16.	
Unit(s): Kilns (<i>K1E, K2E</i>) and Periodic Kiln (P-K3E)	Applicable Requirement: HF emissions from the Kilns shall not exceed 902.7 micrograms of HF per gram of material fired. Compliance with this condition shall be demonstrated by testing the fluoride concentration of a brick both before and after firing. The concentration after firing shall be subtracted from the concentration before firing. This result shall then be multiplied by (18.998 +1.008)/18.998 in order to get the equivalent HF emissions. Compliance with this condition shall be determined by averaging all required tests from the previous 12 months (12 month rolling average).	
1. Reason for Noncompliance:		
Natural content of fluoride in shall HF as determined by requirement	e is fluctuating and in 4.1.16 for the mon	resulted in an overage on the 12-month rolling average for this of July 2013 (952.4Mg) and August 2013 (905.9 Mg).
2. How will Compliance be Ac	hieved?	
2013.		ification Request was submitted to DAQ on November 12,
3. Consent Order Number (if a None	pplicable):	
4. Schedule of Compliance. Pro actions with milestones, lead	ovide a schedule of r ing to compliance, in	emedial measures, including an enforceable sequence of including a date for final compliance.
Remedial Measure or	Action	Date to be Achieved
Permitting under 45CSR13 (Regulation 13)	Application Submitted
5. Submittal of Progress Report The timeframe is short for the Rem reports.	s. ledial Measure or A	ction; therefore, we are not proposing to submit progress
Content of Progress Report:		Report starting date: MM/DD/YYYY
		Submittal frequency:

ATTACHMENT G CONTROL DEVICE FORM(S)

ATTACHMENT G - Air Pollution Control Device Form			
Control device ID number: DC1	List all emission units associated with this control device. Coal Crusher and Separator		
Manufacturer: (installed by) Wagester, Walker, Throton & Co, Inc.	Model number: NA	Installation date:	
Type of Air Pollution Control Device	:		
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone	
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone	
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank	
Catalytic Incinerator	Condenser	Settling Chamber	
Thermal Incinerator	Flare	Other (describe)	
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator	
List the pollutants for which this device	ce is intended to control and the ca	pture and control efficiencies.	
Pollutant	Capture Efficiency	Control Efficiency	
Particulate Matter (Coal Dust)	100%	95%	
Explain the characteristic design parar bags, size, temperatures, etc.). Bags 39 Inches in length insulated singular and 20 ounces of pressure (vacuum), 4:1	ed polyester bags, approximately 2.5	4477 69 10 10 10 10 10 10 10 10 10 10 10 10 10	
s this device subject to the CAM required f Yes, Complete ATTACHMENT H f No, Provide justification.	rements of 40 C.F.R. 64? Yes	_X_ No	
escribe the parameters monitored and	or methods used to indicate perfo	ormance of this control device.	
isual monitoring to check for holes in bags.			

ATTACHMENT G - Air Pollution Control Device Form				
Control device ID number: DC2	List all emission units associated with this control device. Dense Phase System			
Manufacturer: (installed by) Wagester, Walker, Throton & Co, Inc.	Model number: NA	Installation date:		
Type of Air Pollution Control Device				
X_Baghouse/Fabric Filter	Venturi Scrubber	Multiclone		
Carbon Bed Adsorber	Packed Tower Scrubber	Single Cyclone		
Carbon Drum(s)	Other Wet Scrubber	Cyclone Bank		
Catalytic Incinerator	Condenser	Settling Chamber		
Thermal Incinerator	Flare	Other (describe)		
Wet Plate Electrostatic Precipitator		Dry Plate Electrostatic Precipitator		
List the pollutants for which this device	e is intended to control and the ca	pture and control efficiencies.		
Pollutant	Capture Efficiency	Control Efficiency		
Particulate Matter (Coal Dust)	100%	95%		
Explain the characteristic design parameters of this control device (flow rates, pressure drops, number of bags, size, temperatures, etc.). 42 Bags 96 Inches				
s this device subject to the CAM requirements of 40 C.F.R. 64? YesX_ No f Yes, Complete ATTACHMENT H f No, Provide justification.				
describe the parameters monitored and a sixual monitoring to check for holes in bag		ormance of this control device.		

ATTACHMENT H COMPLIANCE ASSURANCE MONITORING FORM

ATTACHMENT H - Compliance Assurance Monitoring (CAM) Plan Form

For definitions and information about the CAM rule, please refer to 40 CFR Part 64. Additional information (including guidance documents) may also be found at http://www.epa.gov/ttn/emc/cam.html

	CAM APPLICABILITY DETERMINATION
s (Does the facility have a PSEU (Pollutant-Specific Emissions Unit considered separately with respect to <u>EACH</u> regulated air pollutant) that is subject to CAM (40 CFR Part 64), which must be addressed in this CAM plan submittal? To determine upplicability, a PSEU must meet <u>all</u> of the following criteria (If No, then the emainder of this form need not be completed):
a	. The PSEU is located at a major source that is required to obtain a Title V permit;
b	. The PSEU is subject to an emission limitation or standard for the applicable regulated air pollutant that is <u>NOT</u> exempt;
	LIST OF EXEMPT EMISSION LIMITATIONS OR STANDARDS:
	 NSPS (40 CFR Part 60) or NESHAP (40 CFR Parts 61 and 63) proposed after 11/15/1990.
	• Stratospheric Ozone Protection Requirements.
	Acid Rain Program Requirements.
	 Emission Limitations or Standards for which a WVDEP Division of Air Quality Title V permit specifies a continuous compliance determination method, as defined in 40 CFR §64.1.
	 An emission cap that meets the requirements specified in 40 CFR §70.4(b)(12).
c.	The PSEU uses an add-on control device (as defined in 40 CFR §64.1) to achieve compliance with an emission limitation or standard;
d.	The PSEU has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than the Title V Major Source Threshold Levels; AND
e.	The PSEU is NOT an exempt backup utility power emissions unit that is municipally-owned.
	DACIC OF CAM CURINGS AT
2)) (BASIS OF CAM SUBMITTAL
2) M	lark the appropriate box below as to why this CAM plan is being submitted as part of an application for a Title V rmit:
	RENEWAL APPLICATION. <u>ALL</u> PSEUs for which a CAM plan has <u>NOT</u> yet been approved need to be addressed in this CAM plan submittal.
	INITIAL APPLICATION (submitted after 4/20/98). ONLY large PSEUs (i. e., PSEUs with potential post-control device emissions of an applicable regulated air pollutant that are equal to or greater than Major Source Threshold Levels) need to be addressed in this CAM plan submittal.
	SIGNIFICANT MODIFICATION TO LARGE PSEUs. ONLY large PSEUs being modified after 4/20/98 need to be addressed in this cam plan submittal. For large PSEUs with an approved CAM plan, Only address the appropriate monitoring requirements affected by the significant modification.

Complete the following table for all PSEUs that need to be addressed in this CAM plan submittal. This section is to be used to provide background data and information for each PSEU In order to supplement the submittal.	Tablillons of a recent of the second of the	* MONITORING REQUIREMENT	
3) ^a BACKGROUND DATA AND INFORMATION AM plan submittal. This section is to be used to provide background data and nd label accordingly.	ROL bEMISSION LIMITATION	-	
3) ^a BACKGRC addressed in this CAM plan submitta e is needed, attach and label according	POLITITANT CONTROL	DEVICE	
lble for <u>all</u> PSEUs that need to be 40 CFR §64.4. If additional space	DESCRIPTION		
Complete the following ta requirements specified in	DESIGNATION	NOTE OF THE PARTY	

		T	_	-	The Part of the Pa	- Complete the	Witness or Street, or other Designation of the last of	-	1000	Name and Address of the Owner, where	 			
ATTOM	*MONITORING REQUIREMENT													Monitor pressure drop across multiclone: Weekly inspection of multiclone
b EMISSION I IMITATION	or STANDARD													45CSR§2-4.1.c.; 9.0 lb/hr
CONTROL	DEVICE													Multiclone
N DOI I ITTANT CONTROL	I NIVI OTTO													PM
DESCRIPTION														Wood-Fired Boiler
PSEU	NOTENTIA												EXAMPLE	Boiler No. 1

^a If a control device is common to more than one PSEU, one monitoring plan may be submitted for the control device with the affected PSEUs identified and any conditions that must be maintained or monitored in applicable control devices identified and any conditions that must be maintained or monitored in accordance with 40 CFR §64.3(a).

Compliance Assurance Monitoring Plan Form (CAM Plan.doc)

Page 2 of 4 Revised - 10/05/06

^b Indicate the emission limitation or standard for any applicable requirement that constitutes an emission limitation, emission standard, or standard of performance (as defined in 40 CFR §64.1).

^e Indicate the monitoring requirements for the PSEU that are required by an applicable regulation or permit condition.

CAM MONITORING APPROACH CRITERIA

Complete this section for <u>EACH</u> PSEU that needs to be addressed in this CAM plan submittal. This section may be copied as needed for each PSEU. This section is to be used to provide monitoring data and information for <u>EACH</u> indicator selected for <u>EACH</u> PSEU in order to meet the monitoring design criteria specified in 40 CFR §64.3 and §64.4. if more than two indicators are being selected for a PSEU or if additional space is needed, attach and label accordingly with the appropriate PSEU designation, pollutant, and indicator numbers.

4a) PSEU Designation:	4b) Pollutant:	4c) ^a Indicator No. 1:	4d) ^a Indicator No. 2:
5a) GENERAL CRITER Describe the MONITOR used to measure the in	RING APPROACH		
^b Establish the appropri <u>RANGE</u> or the procedu the indicator range wh reasonable assurance	res for establishing lich provides a		
5b) PERFORMANCE CR Provide the SPECIFICA' OBTAINING REPRESENT as detector location, in specifications, and min accuracy:	TIONS FOR ATTIVE DATA, such astallation		
°For new or modified mequipment, provide <u>VE</u> <u>PROCEDURES</u> , including recommendations, <u>TO COPERATIONAL STATUS</u> COPERATIONAL STATUS COPERATIONAL S	RIFICATION g manufacturer's CONFIRM THE		
Provide QUALITY ASSUI QUALITY CONTROL (QA that are adequate to ens continuing validity of the daily calibrations, visual routine maintenance, R	/QC) PRACTICES ture the data, (i.e., al inspections,		
d Provide the MONITORING	G FREQUENCY:		
Provide the <u>DATA COLLE</u> PROCEDURES that will be	ECTION e used:		
Provide the <u>DATA AVERA</u> the purpose of determine excursion or exceedance	ing whether an		

^a Describe all indicators to be monitored which satisfies 40 CFR §64.3(a). Indicators of emission control performance for the control device and associated capture system may include measured or predicted emissions (including visible emissions or opacity), process and control device operating parameters that affect control device (and capture system) efficiency or emission rates, or recorded findings of inspection and maintenance activities.

b Indicator Ranges may be based on a single maximum or minimum value or at multiple levels that are relevant to distinctly different operating conditions, expressed as a function of process variables, expressed as maintaining the applicable indicator in a particular operational status or designated condition, or established as interdependent between more than one indicator. For CEMS, COMS, or PEMS, include the most recent certification test for the monitor.

^c The verification for operational status should include procedures for installation, calibration, and operation of the monitoring equipment, conducted in accordance with the manufacturer's recommendations, necessary to confirm the monitoring equipment is operational prior to the commencement of the required monitoring.

d Emission units with post-control PTE ≥ 100 percent of the amount classifying the source as a major source (i.e., Large PSEU) must collect four or more values per hour to be averaged. A reduced data collection frequency may be approved in limited circumstances. Other emission units must collect data at least once per 24 hour period.

RATIONALE	AND JUSTIFICATION
in order to meet the submittal requirements specified in 40 CFR §64	this CAM plan submittal. This section may be copied as needed for each PSEU ne selection of EACH indicator and monitoring approach and EACH indicator range.4.
6a) PSEU Designation:	6b) Regulated Air Pollutant:
the reasons for any differences between the verification of one	PROACH: Provide the rationale and justification for the selection of the cators. Also provide any data supporting the rationale and justification. Explain rational status or the quality assurance and control practices proposed, and the ded, attach and label accordingly with the appropriate PSEU designation and
8) INDICATOR RANGES: Provide the retionals and inviden	
ENGINEERING ASSESSMENTS. Depending on which method is being	ation for the selection of the indicator ranges. The rationale and justification <u>COMPLIANCE OR PERFORMANCE TEST</u> , a <u>TEST PLAN AND SCHEDULE</u> , or by g used for each indicator range, include the specific information required below ach and label accordingly with the appropriate PSEU designation and
emissions under anticipated operating conditions. Such data mercommendations). The rationale and justification shall profit	s determined from control device operating parameter data obtained during a ecified conditions or under conditions representative of maximum potential nay be supplemented by engineering assessments and manufacturer's DE a summary of the compliance or performance test results that were used to at no changes have taken place that could result in a significant change in the ce the compliance or performance test was conducted.
implementation plan and schedule that will provide for use of the	mined from a proposed implementation plan and schedule for installing, testing, he monitoring). The rationale and justification shall <u>INCLUDE</u> the proposed ne monitoring as expeditiously as practicable after approval of this CAM plan, tion and beginning operation of the monitoring exceed 180 days after approval.
assessments and other data, such as manufacturers' design criter	redures for establishing indicator ranges are determined from engineering ria and historical monitoring data, because factors specific to the type of mance testing unnecessary). The rationale and justification shall INCLUDE uired to establish the indicator range.
ATIONALE AND JUSTIFICATION:	

APPENDIX EMISSION CALCULATIONS

By: PEW Date: December 22, 2009

PTE

Checked By: CCS Date: December 22, 2009

	Regulated Air Pollutant		(Uncontrolled)	Actual (Controlled)			
Description	Air Pollutant				issions		
Shale Transfer Deints		lb/hour	tpy	lb/hour	tpy		
Shale Fransier Points	PM	0.96	0.96	0.34	0.34		
	PM10	0.45	0.45	0.16	0.16		
aindian and O	PM2.5	0.07	0.07	0.02	0.02		
pal Fuel System atural Gas Generator		46.50	47.52	9.30	9.50		
	PM10	24.00	24.53	4.80	4.91		
	PM2.5	3.00	3.07	0.60	0.61		
Inck Forming	PM	12.60	55.19	2.52	11.04		
	PM10	6.30	27.59	1.26	5.52		
	PM2.5	0.88	3.83	0.18	0.77		
ilns	PM	31.62	130.11	31.62	130.11		
	PM10	24.84	101.21	24.84	101.21		
	PM2.5	16.10	62.91	16.10	62.91		
HAPS See Next Page	SO2	29.20	122.16	29.20	122.16		
	NOx	9.12	36.87	9.12	36.87		
	CO	22.20	86.76	22.20	86.76		
	VOC	0.45	1.75	0.45	1.75		
	HF	33.48	130.87	33.48	130.87		
	HCL	3.14	12.29	3.14			
	HAP VOCS	0.1788	0.6344		12.29		
oal Fuel System	PM	43.61		0.1788	0.6344		
a doi ojstem	PM10		189.29	2.38	9.48		
		39.19	170.85	2.05	8.55		
tural Gas Conorate-	PM2.5	39.03	170.83	1.97	8.54		
itural Gas Generator	PM	0.0016	0.0004	0.0016	0.0004		
	PM10	0.0016	0.0004	0.0016	0.0004		
	PM2.5	0.0001	0.0001	0.0001	0.0001		
	SO2	0.0001	0.0001	0.0001	0.0001		
	NOx	0.6487	0.1622	0.6487	0.1622		
	CO	0.0504	0.0126	0.0504	0.0126		
	VOC	0.0188	0.0047	0.0188	0.0047		
	HAP VOCS	0.0114	0.0029	0.0114	0.0029		
nd Transfer	PM	0.9700	0.0060	0.9700	0.0060		
	PM10	0.4588	0.0028	0.4588	0.0028		
	PM2.5	0.0695	0.0004	0.0695	0.0028		
nd Dryer	PM	0.04	0.17	0.04	0.0004		
	PM10	0.04	0.17	0.04			
	PM2.5	0.04	0.17	0.04	0.17		
	SO2	0.01			0.17		
	NOx	0.50	0.02 2.19	0.01	0.02		
	CO	0.42		0.50	2.19		
	VOC		1.84	0.42	1.84		
		0.03	0.13	0.03	0.13		
	HAP VOCS	0.01	0.05	0.01	0.05		
	HAP METALS	0.01	0.01	0.01	0.01		
nt Sources	PM	136.30	423.25	47.17	160.65		
	PM10	95.28	324.81	33.61	120.52		
	PM2.5	59.19	240.88	18.98	73.02		
	SO2	29.21	122.18	29.21	122.18		
	NOx	10.27	39.22	10.27	39.22		
	CO	22.67	88.61	22.67			
	VOC	0.50	1.88	0.50	88.61		
	HF	33.48			1.88		
	HCL		130.87	33.48	130.87		
		3.14	12.29	3.14	12.29		
	HAP VOCS	0.20	0.69	0.20	0.69		
	HAP METALS	0.01	0.01	0.01	0.01		
Stockpile	PM	0.72	3.18	0.72	3.18		
	PM10	0.34	1.50	0.34	1.50		
	PM2.5	0.05	0.23	0.05	0.23		
Haulroads	PM	90.12	99.31	22.54	24.84		
	PM10	25.73	28.42	6.45			
	PM2.5	2.60	2.87		7.11		
tive Sources	PM	90.84	The second secon	0.65	0.73		
500.035			102.49	23.26	28.02		
	PM10	26.07	29.92	6.79	8.61		
ity Total	PM2.5	2.65	3.10	0.70	0.96		
ity Total	Total PM =	227.14	525.74	70.43	188.67		
	Total PM10 =	121.35	354.73	40.40	129.13		
	Total PM2.5 =	61.84	243.98	19.68	73.98		

By: PEW Date: December 22, 2009

PTE

Checked By: CCS Date: December 22, 2009

Regulated	Potential	(Uncontrolled)	Actual	(Controlled)
Air Pollutant		nissions		issions
	lb/hour	tpy	lb/hour	tpy
1,1-dichloroethane	8.00E-05	3.60E-04	8.00E-05	3.60E-0
1,1,1-trichloroethane	2.90E-04	1.22E-03	2.90E-04	1.22E-0
1,4-dichlorobenzene	9.00E-04	3.46E-03	9.00E-04	3.46E-0
2-butanone	4.56E-03	1.81E-02	4.56E-03	1.81E-0
2-hexanone (1)	1.57E-03	6.14E-03	1.57E-03	
2-methylnaphthalene	1.05E-03	4.12E-03	1.05E-03	6.14E-0 4.12E-0
2-methylphenol	4.00E-05	1.60E-04	4.00E-05	1.60E-0
Acetone	3.15E-02	1.23E-01	3.15E-02	1.23E-0
Acrylonitrile	0.00E+00	0.00E+00	0.00E+00	0.00E+0
Benzene	5.37E-02	2.10E-01	5.37E-02	2.10E-0
Benzoic acid	4.12E-03	1.81E-02	4.12E-03	1.81E-02
Bis(2-ethylhexy)phthalate	3.70E-02	1.45E-01	3.70E-02	1.45E-01
Bromomethane	4.00E-04	1.74E-03	4.00E-04	1.45E-01
Butylbenzylphthalate	3.40E-04	1.30E-03	3.40E-04	
Carbon disulfide	7.90E-04	3.10E-03	7.90E-04	1.30E-03
Carbon tetrachloride	0.00E+00	0.00E+00	0.00E+00	3.10E-03
Chlorine	2.41E-02	9.40E-02	2.41E-02	0.00E+00
Chlorobenzene	3.40E-04	1.52E-03	3.40E-04	9.40E-02
Chloroethane	1.05E-02	4.12E-02	1.05E-02	1.52E-03
Chloroform	0.00E+00	0.00E+00	0.00E+00	4.12E-02
Chloromethane	1.24E-02	4.84E-02	1.24E-02	0.00E+00
Dibenzofuran	0.00E+00	2.00E-05	0.00E+00	4.84E-02
Di-n-butylphthalate	2.60E-03	1.01E-02	2.60E-03	2.00E-05
Di-n-octylphthalate	2.00E-04	8.60E-04	2.00E-04	1.01E-02
Diethylphthalate	4.44E-03	1.74E-02	4.44E-03	8.60E-04
Dimethylphthalate	2.00E-05	6.00E-05	2.00E-05	1.74E-02
thylbenzene	8.10E-04	3.18E-03	8.10E-04	6.00E-05
odomethane (2)	1.73E-03	6.72E-03	1.73E-03	3.18E-03
sophorone	5.00E-04	2.16E-03	5.00E-04	6.72E-03
/l-/p-xylene	2.27E-03	9.40E-03	2.27E-03	2.16E-03
Methylene chloride	2.00E-05	6.00E-05		9.40E-03
laphthalene	1.21E-03	4.70E-03	2.00E-05 1.21E-03	6.00E-05
)-xylene	1.08E-03	4.20E-03	1.08E-03	4.70E-03
Phenol	1.59E-03	6.22E-03	1.59E-03	4.20E-03
tyrene	3.80E-04	1.44E-03	3.80E-04	6.22E-03
etrachloroethane	5.00E-05	2.00E-04	5.00E-05	1.44E-03
richloroethane	0.00E+00	0.00E+00	0.00E+00	2.00E-04
oluene	4.44E-03	1.81E-02	4.44E-03	0.00E+00
inyl acetate	0.00E+00	0.00E+00	0.00E+00	1.81E-02
richlorofluoromethane	2.40E-04	1.02E-03	2.40E-04	0.00E+00
otal VOC	2.05E-01	8.06E-01	2.40E-04 2.05E-01	1.02E-03
on-HAP	4.34E-02	1.72E-01		8.06E-01
AP	1.62E-01	6.34E-01	4.34E-02	1.72E-01
AP	1.V4L-V1	3.34E-01	1.62E-01	6.34E-01
L) METHYL N-BUTYL KET D) METHYL IODIDE	ONE			

By: PEW Date: December 22, 2009 Kiln No. 1

Checked By: CCS Date: December 22, 2009

	TPH	TPY
Tons Fired	8.25	72,270

Natural Gas Firing

Rounding to =

2

Pollutant	EF			ssions		EF	
			ntrolled	Co	ntrolled	Reference	
	ib/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)		1
PM	0.96	7.92	34.69	7.92	34.69	Table 11.3-2	<u>. </u>
PM10	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	7
PM2.5	ND					Table 11.3-2	
SO2	0.67	5.53	24.21	5.53	24.21	Table 11.3-3	
NOx	0.35	2.89	12.65	2.89	12.65	Table 11.3-3	
co	1.2	9.90	43.36	9.90	43.36	Table 11.3-3	
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	
HF (1)	1.81	14.93	65.40	14.93	65.40		7
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	1
Volatile Organics	Rounded to		5				CAS
1,1-dichloroethane	ND						0,10
1,1,1-trichloroethane	4.70E-06	0.00004	0.00017	0.00004	0.00017	Table 11.3-6	71-
1,4-dichlorobenzene	4.80E-05	0.00040	0.00173				
2-butanone	2.20E-04	0.00182	0.00795				
2-hexanone	8.50E-05	0.00070	0.00307				
2-methylnaphthalene	5.70E-05	0.00047	0.00206				
2-methylphenol	ND ND	5.50047	0.00200	0.00047	0.00200	Table 11.3-6	91-3
Acetone	1.70E-03	0.01403	0.06143	0.01403	0.06143	Table 11.3-6	67.
Acrylonitrile	ND	0.01403	0.00143	0.01403	0.06143	Table 11.3-6	67-6
Benzene	2.90E-03	0.02393	0.10479	0.02393	0.40470	Toble 44.0.0	1 74
Benzoic acid	ND	0.02393	0.10479	0.02393	0.10479	Table 11.3-6	71-4
Bis(2-ethylhexy)phthalate	2.00E-03	0.01650	0.07227	0.04050	0.07007	Table 44.5 5	1
Bromomethane	ND	0.01050	0.07227	0.01650	0.07227	Table 11.3-6	117-
Butylbenzylphthalate	1.80E-05	0.00045	0.00005	0.00015	0.0000	T-101	
Carbon disulfide	4.30E-05	0.00015	0.00065	0.00015	0.00065		
Carbon tetrachloride	4.30E-05 ND	0.00035	0.00155	0.00035	0.00155	Table 11.3-6	75-1
Chlorine	1.30E-03	0.04070	0.04000	0.04075	0.01055		
Chlorobenzene		0.01073	0.04698	0.01073	0.04698	Table 11.3-6	7782-
Chloroethane	ND 5 705 04	0.00475	0.00055	0.00/5			
Chloroform	5.70E-04	0.00470	0.02060	0.00470	0.02060	Table 11.3-6	75-0
Chloromethane	ND 0.705.04	0.00555					
	6.70E-04	0.00553	0.02421	0.00553	0.02421	Table 11.3-6	74-8
Dibenzofuran	ND						
Di-n-butylphthalate	1.40E-04	0.00116	0.00506	0.00116	0.00506	Table 11.3-6	84-7
0i-n-octylphthalate	ND						
Diethylphthalate	2.40E-04	0.00198	0.00867	0.00198	0.00867	Table 11.3-6	84-66
imethylphthalate	ND						
thylbenzene	4.40E-05	0.00036	0.00159	0.00036	0.00159	Table 11.3-6	100-4
odomethane	9.30E-05	0.00077	0.00336	0.00077	0.00336	Table 11.3-6	74-88
ophorone	ND						
l-/p-xylene	6.70E-05	0.00055	0.00242	0.00055	0.00242	Table 11.3-6	1330-2
lethylene chloride	ND						
aphthalene	6.50E-05	0.00054	0.00235	0.00054	0.00235	Table 11.3-6	91-20
-xylene	5.80E-05	0.00048	0.00210	0.00048	0.00210	Table 11.3-6	95-47
henol	8.60E-05	0.00071	0.00311	0.00071	0.00311	Table 11.3-6	108-95
tyrene	2.00E-05	0.00017	0.00072	0.00017	0.00072		100-42
etrachloroethane	2.80E-06	0.00002	0.00010	0.00002	0.00010	Table 11.3-6	127-18
richloroethane	ND						14.1-10
oluene	1.60E-04	0.00132	0.00578	0.00132	0.00578	Table 11.3-6	108-88
nyl acetate	ND		3.000,0	3.00102	3.00070	Table 11.3-0	100-00
richlorofluoromethane	ND						
AP						-anco-co-co-co-co-co-co-co-co-co-co-co-co-c	

By: PEW

Checked By: CCS Date: December 22, 2009

Date: December 22, 2009 Kiln No. 1

Coal Firing

Rounding to =

2

Pollutant	EF			ck Test Res	(10/11)	11.6	Ä
		Lincor	ntrolled		ntrolled	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)	Kelerence	
PM	1.8	14.85	65.04	14.85	65.04	Table 11.3-2	\dashv
PM10	1.40	11.55	50.59	11.55	50.59	Table 11.3-2	
PM2.5	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	
SO2 (2)	1.69	13.93	61.07	13.93	61.07	Table 11.3-3	
NOx	0.51	4.21	18.43	4.21	18.43	Table 11.3-3	
CO	0.8	6.60	28.91	6.60	28.91	Table 11.3-3	
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	
HF (1)	1.81	14.93	65.40	14.93	65.40	1.000	-
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	
Volatile Organics	Rounded to		5	1	 	1	CAS N
1,1-dichloroethane	5.00E-06	0.00004	0.00018	0.00004	0.00018	Table 11.3-6	
1,1,1-trichloroethane	1.70E-05	0.00014	0.00061				
1,4-dichlorobenzene	3.20E-06	0.00003	0.00012				
2-butanone	2.50E-04	0.00206	0.00903		0.00903		
2-hexanone	9.40E-07	0.00001	0.00003		0.00003		
2-methylnaphthalene	1.70E-06	0.00001	0.00006		0.00006		
2-methylphenol	2.20E-06	0.00002	0.00008		0.00008		
Acetone	6.80E-04	0.00561	0.02457	0.00561	0.02457		
Acrylonitrile	ND	0.00007	0.02 107	0.00001	0.02407	Tubic 11.0-0	07-04
Benzene	2.90E-04	0.00239	0.01048	0.00239	0.01048	Table 11.3-6	71-43
Benzoic acid	2.50E-04	0.00206	0.00903	0.00206	0.00903		
Bis(2-ethylhexy)phthalate	7.30E-05	0.00060	0.00264	0.00060	0.00363		
Bromomethane	2.40E-05	0.00020	0.00087	0.00020	0.00284		
Butylbenzylphthalate	1.20E-06	0.00001	0.00004	0.00001	0.00004		
Carbon disulfide	2.30E-06	0.00002	0.00008	0.00001	0.00004	Table 11.3-6	
Carbon tetrachloride	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	56-23-
Chlorine	ND ND	0.00000	0.00000	0.00000	0.00000	Table 11.3-0	30-23-
Chlorobenzene	2.10E-05	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	108-90
Chloroethane	1.10E-05	0.00009	0.00040	0.00009	0.00076	Table 11.3-6	75-00-
Chloroform	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	67-66-
Chloromethane	1.10E-04	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	74-87-
Dibenzofuran	3.60E-07	0.00000	0.00001	0.00000	0.00001	Table 11.3-6	132-64
Di-n-butylphthalate	ND	0.00000	0.00001	0.00000	0.00001	1 able 11.3-6	132-64
0i-n-octylphthalate	1.20E-05	0.00010	0.00043	0.00010	0.00043	Table 11.3-6	NA
iethylphthalate	1.40E-06	0.00010	0.000045	0.00001	0.00043	Table 11.3-6	84-66-
imethylphthalate	7.80E-07	0.00001	0.00003	0.00001	0.00003		
thylbenzene	2.10E-05	0.00017	0.00003	0.00001		Table 11.3-6	131-11
odomethane	ND ND	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	100-41-
ophorone	3.00E-05	0.00025	0.00108	0.00025	0.00408	T-bl- 44 0 0	70.50
l-/p-xylene	1.30E-04	0.00023	0.00108		0.00108	Table 11.3-6	78-59-
lethylene chloride	8.00E-07	0.00001	0.00003	0.00107	0.00470	Table 11.3-6	
aphthalene	6.90E-06	0.00001	0.00003	0.00001		Table 11.3-6	75-09-
-xylene	4.70E-05	0.00039	0.00025	0.00008	0.00025 0.00170	Table 11.3-6	91-20-
henol	3.50E-05	0.00039	0.00176	0.00039		Table 11.3-6	95-47-
tyrene	1.00E-07	0.00029	0.00000	0.00029	0.00126	Table 11.3-6	108-95-
etrachloroethane	1.00E-07	0.00000	0.00000	0.00000			100-42-
richloroethane					0.00000	Table 11.3-6	127-18
oluene	1.00E-07 2.50E-04	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	71-55-0
nyl acetate		0.00206	0.00903	0.00206	0.00903	Table 11.3-6	108-88-
ichlorofluoromethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	108-05-
AP	1.40E-05	0.00012	0.00051	0.00012	0.00051	Table 11.3-6	75-69-4

[|] HAP | 1.00051 | 0.00051 | 0.00051 | Table 11.3-6 | 75-69-4 | 1.00051

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW Date: December 22, 2009 Kiln No. 1

Checked By: CCS Date: December 22, 2009

Maximum Emissions

Pollutant		Emission	ıs	
1	Uncontro	olled	Con	trolled
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	14.85	65.04	14.85	65.04
PM10	11.55	50.59	11.55	50.59
PM2.5	7.18	31.44	7.18	31.44
SO2	13.93	61.07	13.93	61.07
NOx	4.21	18.43	4.21	18.43
CO	9.90	43.36	9.90	43.36
VOC	0.20	0.87	0.20	0.87
HF	14.93	65.40	14.93	65.40
HCL	1.40	6.14	1.40	6.14
Volatile Organics			Name of the last o	
1,1-dichloroethane	0.00004	0.00018	0.00004	0.00018
1,1,1-trichloroethane	0.00014	0.00061	0.00014	0.00061
1,4-dichlorobenzene	0.00040	0.00173	0.00040	0.00173
2-butanone	0.00206	0.00903	0.00206	0.00903
2-hexanone	0.00070	0.00307		
2-methylnaphthalene	0.00047	0.00206	0.00047	0.00206
2-methylphenol	0.00002	0.00008	0.00002	0.00008
Acetone	0.01403	0.06143	0.01403	0.06143
Acrylonitrile	0.00000	0.00000	0.00000	0.00000
Benzene	0.02393	0.10479	0.02393	0.10479
Benzoic acid	0.00206	0.00903	0.00206	0.00903
Bis(2-ethylhexy)phthalate	0.01650	0.07227	0.01650	0.07227
Bromomethane	0.00020	0.00087	0.00020	0.00087
Butylbenzylphthalate	0.00015	0.00065	0.00015	0.00065
Carbon disulfide	0.00035	0.00155	0.00035	0.00155
Carbon tetrachloride	0.00000	0.00000	0.00000	0.00000
Chlorine	0.01073	0.04698	0.01073	0.04698
Chlorobenzene	0.00017	0.00076	0.00017	0.00076
Chloroethane	0.00470	0.02060	0.00470	0.02060
Chloroform	0.00000	0.00000	0.00000	0.00000
Chloromethane	0.00553	0.02421	0.00553	0.02421
Dibenzofuran	0.00000	0.00001	0.00000	0.00001
Di-n-butylphthalate	0.00116	0.00506	0.00116	0.00506
Di-n-octylphthalate	0.00010	0.00043	0.00010	0.00043
Diethylphthalate	0.00198	0.00867	0.00198	0.00043
Dimethylphthalate	0.00001	0.00003	0.00001	0.00003
Ethylbenzene	0.00036	0.00003	0.00036	0.00003
odomethane	0.00077	0.00336	0.00030	0.00336
sophorone	0.00077	0.00338	0.00025	0.00338
M-/p-xylene	0.00023	0.00470	0.00023	0.00108
Methylene chloride	0.00001	0.00003	0.00001	0.00003
Naphthalene	0.00054	0.00003	0.00054	0.00003
)-xylene	0.00034	0.00233	0.00034	0.00235
Phenol	0.00071	0.00210	0.00048	0.00210
Styrene	0.00077	0.00072	0.00071	3.00
etrachloroethane	0.00017	0.00072	0.000017	0.00072
richloroethane	0.00002			0.00010
oluene	0.00000	0.00000	0.00000	0.00000
inyl acetate	0.00206	0.00903	0.00206	0.00903
richlorofluoromethane	0.00000	0.00000	0.00000	0.00000
		0.00051	0.00012	0.00051
IAP Total (not HF or HCL)	0.07	0.32	0.07	0.32

By: PEW Checked By: CCS Date: December 22, 2009 Date: December 22, 2009 Kiln No. 2

TPH TPY Tons Fired 8.25 72,270

Natural Gas Firing

Rounding to =

2

Pollutant	EF		Emi	EF			
1		Unco	ntrolled	Co	ntrolled	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)		1
PM	0.96	7.92	34.69	7.92	34.69	Table 11.3-2	!
PM10	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	
PM2.5	ND					Table 11.3-2	
SO2	0.67	5.53	24.21	5.53	24.21	Table 11.3-3	
NOx	0.35	2.89	12.65	2.89	12.65	Table 11.3-3	
CO	1.2	9.90	43.36	9.90	43.36	Table 11.3-3	7
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	
HF (1)	1.81	14.93	65.40	14.93	65.40		
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	
Volatile Organics	Rounded to		5				CAS
1,1-dichloroethane	ND						
1,1,1-trichloroethane	4.70E-06	0.00004	0.00017	0.00004	0.00017	Table 11.3-6	71-
1,4-dichlorobenzene	4.80E-05	0.00040	0.00173				
2-butanone	2.20E-04	0.00182	0.00795				
2-hexanone	8.50E-05	0.00070	0.00307				
2-methylnaphthalene	5.70E-05	0.00047	0.00206				
2-methylphenol	ND			0.00011	0.00200	14010 11:0-0	01-0
Acetone	1.70E-03	0.01403	0.06143	0.01403	0.06143	Table 11.3-6	67-6
Acrylonitrile	ND	5.51.50	5.55,40	0.01400	0.00140	14016 11.0-0	07-0
Benzene	2.90E-03	0.02393	0.10479	0.02393	0.10479	Table 11.3-6	71-4
Benzoic acid	ND ND	0.02000	0.10470	0.02000	0.10478	Table 11.3-0	/ 1
Bis(2-ethylhexy)phthalate	2.00E-03	0.01650	0.07227	0.01650	0.07227	Table 11.3-6	117-
Bromomethane	ND ND	0.01000	0.01221	0.01030	0.01221	Table 11.3-6	117-
Butylbenzylphthalate	1.80E-05	0.00015	0.00065	0.00015	0.00065	Table 44 0 C	05.0
Carbon disulfide	4.30E-05	0.00015	0.00065	0.00015	0.00065	Table 11.3-6	
Carbon tetrachloride	ND	0.00033	0.00133	0.00033	0.00133	Table 11.3-6	75-1
Chlorine	1.30E-03	0.01073	0.04698	0.01072	0.04608	T-bl- 44 0 0	7700
Chlorobenzene	ND	0.01073	0.04696	0.01073	0.04698	Table 11.3-6	1182-
Chloroethane	5.70E-04	0.00470	0.00000	0.00470	0.00000	T-11-11-00	75.0
Chloroform	ND	0.00470	0.02060	0.00470	0.02060	Table 11.3-6	75-0
Chloromethane	6.70E-04	0.00550	0.00404	0.00550	0.00101		-
Dibenzofuran	ND	0.00553	0.02421	0.00553	0.02421	Table 11.3-6	74-8
Di-n-butylphthalate		0.00440	0.00500	0.00440	0.00500	= 11 11 0 0	
Di-n-octylphthalate	1.40E-04	0.00116	0.00506	0.00116	0.00506	Table 11.3-6	84-7
Diethylphthalate	ND 2.405.04	0.00400	0.00007	0.00/00			
Dimethylphthalate	2.40E-04	0.00198	0.00867	0.00198	0.00867	Table 11.3-6	84-6
thylbenzene	ND 4.40E.0E	0.00000	0.00455	0.0000	0.00:5:		
	4.40E-05	0.00036	0.00159	0.00036	0.00159	Table 11.3-6	100-4
odomethane	9.30E-05	0.00077	0.00336	0.00077	0.00336	Table 11.3-6	74-88
sophorone	ND 0.705.05	0.00055	0.00010	0.000			
I-/p-xylene	6.70E-05	0.00055	0.00242	0.00055	0.00242	Table 11.3-6	1330-2
lethylene chloride	ND 0.505.05	0.000	0.00				At the second
aphthalene	6.50E-05	0.00054	0.00235	0.00054	0.00235	Table 11.3-6	91-20
-xylene	5.80E-05	0.00048	0.00210	0.00048	0.00210	Table 11.3-6	95-47
henol	8.60E-05	0.00071	0.00311	0.00071	0.00311	Table 11.3-6	
tyrene	2.00E-05	0.00017	0.00072	0.00017	0.00072	Table 11.3-6	
etrachloroethane	2.80E-06	0.00002	0.00010	0.00002	0.00010	Table 11.3-6	127-18
richloroethane	ND						
oluene	1.60E-04	0.00132	0.00578	0.00132	0.00578	Table 11.3-6	108-88
nyl acetate	ND						
richlorofluoromethane	ND						
AP				100			

By: PEW Checked By: CCS Date: December 22, 2009 Kiln No. 2 Date: December 22, 2009

Coal Firing

Rounding to =

2

Pollutant	EF		Emi	ssions		EF	
1		Unco	ntrolled	Co	ntrolled	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
PM	1.8	14.85	65.04	14.85	65.04	Table 11.3-2	
PM10	1.40	11.55	50.59	11.55	50.59	Table 11.3-2	
PM2.5	0.87	7.18	31.44	7.18	31.44	Table 11.3-2	
SO2 (2)	1.69	13.93	61.07	13.93	61.07	Table 11.3-3	
NOx	0.51	4.21	18.43	4.21	18.43	Table 11.3-3	
СО	0.8	6.60	28.91	6.60	28.91	Table 11.3-3	
VOC	0.024	0.20	0.87	0.20	0.87	Table 11.3-5	
HF (1)	1.81	14.93	65.40	14.93	65.40		7
HCL	0.17	1.40	6.14	1.40	6.14	Table 11.3-4	1
Volatile Organics	Rounded to		5				CASI
1,1-dichloroethane	5.00E-06	0.00004	0.00018	0.00004	0.00018	Table 11.3-6	
1,1,1-trichloroethane	1.70E-05	0.00014	0.00061	0.00014			
1,4-dichlorobenzene	3.20E-06	0.00003	0.00012				
2-butanone	2.50E-04	0.00206	0.00903				
2-hexanone	9.40E-07	0.00001	0.00003		0.00003		
2-methylnaphthalene	1.70E-06	0.00001	0.00006		0.00006		
2-methylphenol	2.20E-06	0.00002	0.00008		0.00008		
Acetone	6.80E-04	0.00561	0.02457	0.00561	0.02457	Table 11.3-6	
Acrylonitrile	ND			0.00001	0.02 101	14510 11.0-0	01-0
Benzene	2.90E-04	0.00239	0.01048	0.00239	0.01048	Table 11.3-6	71-4
Benzoic acid	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	
Bis(2-ethylhexy)phthalate	7.30E-05	0.00060	0.00264	0.00260	0.00363	Table 11.3-6	
Bromomethane	2.40E-05	0.00020	0.00087	0.00020	0.00287	Table 11.3-6	
Butylbenzylphthalate	1.20E-06	0.00001	0.00004	0.00020	0.00004	Table 11.3-6	
Carbon disulfide	2.30E-06	0.00002	0.00008	0.00002	0.00004	Table 11.3-6	
Carbon tetrachloride	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	
Chlorine	ND	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	56-23
Chlorobenzene	2.10E-05	0.00017	0.00076	0.00017	0.00076	Toble 11 2 C	108-9
Chloroethane	1.10E-05	0.00009	0.00040	0.000017	0.00076	Table 11.3-6	
Chloroform	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	
Chloromethane	1.10E-04	0.00000	0.00397	0.00000	0.00397	Table 11.3-6	
Dibenzofuran	3.60E-07	0.00000	0.00001	0.00000		Table 11.3-6	
Di-n-butylphthalate	ND	0.00000	0.00001	0.00000	0.00001	Table 11.3-6	132-6
i-n-octylphthalate	1.20E-05	0.00010	0.00043	0.00010	0.00040	T-11- 44 0 0	111
Piethylphthalate	1.40E-06	0.00001	0.000043	0.00010	0.00043	Table 11.3-6	NA
imethylphthalate	7.80E-07	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	
thylbenzene	2.10E-05	0.000017	0.00003	0.00001		Table 11.3-6	131-1
odomethane	ND	0.00017	0.00076	0.00017	0.00076	Table 11.3-6	100-4
sophorone	3.00E-05	0.00025	0.00108	0.00025	0.00100	Table 44.0.0	70.50
I-/p-xylene	1.30E-04	0.00023	0.00108	0.00025	0.00108	Table 11.3-6	78-59
lethylene chloride	8.00E-07	0.00001			0.00470	Table 11.3-6	1330-2
aphthalene	6.90E-06	0.00001	0.00003	0.00001	0.00003	Table 11.3-6	75-09
-xylene	4.70E-05			0.00006	0.00025	Table 11.3-6	91-20-
henol	3.50E-05	0.00039	0.00170	0.00039	0.00170	Table 11.3-6	95-47-
tyrene		0.00029	0.00126	0.00029	0.00126	Table 11.3-6	108-95
	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	100-42
etrachloroethane richloroethane	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	127-18
oluene	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	71-55-
	2.50E-04	0.00206	0.00903	0.00206	0.00903	Table 11.3-6	108-88
nyl acetate	1.00E-07	0.00000	0.00000	0.00000	0.00000	Table 11.3-6	108-05
richlorofluoromethane	1.40E-05	0.00012	0.00051	0.00012	0.00051	Table 11.3-6	75-69-
10							

⁽²⁾ SO2 stack test results indicate 11.61 pounds per hour as the highest actual emission value. Emission factor above based on stack test result plus 20%. The emission factor is back calculated from the factored emissions testing and the operating rate per hour.

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW Date: December 22, 2009 Kiln No. 2

Checked By: CCS Date: December 22, 2009

Maximum Emissions

Pollutant		Emission		
	Uncontro			trolled
PM	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM10	14.85	65.04	14.85	65.04
PM2.5	11.55	50.59	11.55	50.59
SO2	7.18	31.44	7.18	31.44
NOx	13.93	61.07	13.93	61.07
CO	4.21	18.43	4.21	18.43
VOC	9.90	43.36	9.90	43.36
HF	0.20	0.87	0.20	0.87
HCL	14.93	65.40	14.93	65.40
Volatile Organics	1.40	6.14	1.40	6.14
	0.00004			
1,1-dichloroethane	0.00004	0.00018		0.0000000000000000000000000000000000000
1,1,1-trichloroethane	0.00014	0.00061	The Control of the Co	
1,4-dichlorobenzene	0.00040	0.00173		
2-butanone	0.00206	0.00903	0.00206	
2-hexanone	0.00070	0.00307	0.00070	
2-methylnaphthalene	0.00047	0.00206	0.00047	0.00206
2-methylphenol	0.00002	0.00008	0.00002	0.00008
Acetone	0.01403	0.06143	0.01403	0.06143
Acrylonitrile	0.00000	0.00000	0.00000	0.00000
Benzene	0.02393	0.10479	0.02393	0.10479
Benzoic acid	0.00206	0.00903	0.00206	0.00903
Bis(2-ethylhexy)phthalate	0.01650	0.07227	0.01650	0.07227
Bromomethane	0.00020	0.00087	0.00020	0.00087
Butylbenzylphthalate	0.00015	0.00065	0.00015	0.00065
Carbon disulfide	0.00035	0.00155	0.00035	0.00155
Carbon tetrachloride	0.00000	0.00000	0.00000	0.00000
Chlorine	0.01073	0.04698	0.01073	0.04698
Chlorobenzene	0.00017	0.00076	0.00017	0.00076
Chloroethane	0.00470	0.02060	0.00470	0.02060
Chloroform	0.00000	0.00000	0.00000	0.00000
Chloromethane	0.00553	0.02421	0.00553	0.02421
Dibenzofuran	0.00000	0.00001	0.00000	0.00001
Di-n-butylphthalate	0.00116	0.00506	0.00116	0.00506
Di-n-octylphthalate	0.00010	0.00043	0.00010	0.00043
Diethylphthalate	0.00198	0.00867	0.00198	0.00867
Dimethylphthalate	0.00001	0.00003	0.00001	0.00003
thylbenzene	0.00036	0.00159	0.00036	0.00159
odomethane	0.00077	0.00336	0.00077	0.00336
sophorone	0.00025	0.00108	0.00025	0.00108
/l-/p-xylene	0.00107	0.00470	0.00107	0.00470
Methylene chloride	0.00001	0.00003	0.00001	0.00003
laphthalene	0.00054	0.00235	0.00054	0.00235
)-xylene	0.00048	0.00210	0.00048	0.00230
Phenol	0.00071	0.00311	0.00071	0.00311
tyrene	0.00017	0.00072	0.00017	0.00072
etrachloroethane	0.00002	0.00012	0.00002	0.00012
richloroethane	0.00000	0.00000	0.00000	0.00000
oluene	0.00206	0.00903	0.00206	0.00903
inyl acetate	0.00000	0.00000	0.00000	0.00000
richlorofluoromethane	0.00012	0.00051	0.00012	0.00051
AP Total (not HF or HCL)	0.007	0.00031	0.00012	0.00031

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

 By: PEW
 Checked By: CCS

 Date: December 22, 2009
 Date: December 22, 2009

Periodic Kiln		
	TPH(1)	TPY(1)
Tons Fired	2.00	72

Natural Gas Firing

Rounding to =

2

Pollutant	EF (3)		Emi	ssions		EF		
271 2007/03/2 (Auditor 19, 277 (1906/46))		Unco	Uncontrolled Cont			Reference	Reference	
	lb/T	(lb/hr)	(tpy)	(lb/hr)	(tpy)		1	
PM	0.96	1.92	0.03	1.92	0.03	Table 11.3-2		
PM10	0.87	1.74	0.03	1.74	0.03	Table 11.3-2	_	
PM2.5	ND					Table 11.3-2		
SO2	0.67	1.34	0.02	1.34	0.02	Table 11.3-3		
NOx	0.35	0.70	0.01	0.70	0.01	Table 11.3-3		
CO	1.2	2.40	0.04	2.40	0.04	Table 11.3-3	_	
VOC	0.024	0.05	0.01	0.05	0.01	Table 11.3-5		
HF (2)	1.81	3.62	0.07	3.62	0.07	11.0.0	\dashv	
HCL	0.17	0.34	0.01	0.34	0.01	Table 11.3-4	-	
Volitaile Organics	Rounded to		5			14010 1110 1	CAS	
1,1-dichloroethane	ND						OAG	
1,1,1-trichloroethane	4.70E-06	0.00001	0.00000	0.00001	0.00000	Table 11.3-6	71-5	
1,4-dichlorobenzene	4.80E-05	0.00010	0.00000	0.00010	0.00000			
2-butanone	2.20E-04	0.00010	0.00001	0.00044	0.00001	Table 11.3-6		
2-hexanone	8.50E-05	0.00044	0.00000	0.00044	0.00000			
2-methylnaphthalene	5.70E-05	0.00017	0.00000	0.00017	0.00000			
2-methylphenol	ND	0.00011	0.00000	0.00011	0.00000	Table 11.3-6	91-5	
Acetone	1.70E-03	0.00340	0.00006	0.00340	0.00006	Table 11.3-6	67.0	
Acrylonitrile	ND	0.00340	0.00006	0.00340	0.00006	Table 11.3-6	67-6	
Benzene	2.90E-03	0.00580	0.00010	0.00500	0.00040	T-11- 44 0 0	74.4	
Benzoic acid	ND	0.00360	0.00010	0.00580	0.00010	Table 11.3-6	71-4	
Bis(2-ethylhexy)phthalate	2.00E-03	0.00400	0.00007	0.00400	0.00007	T. 11 44 0 0	4.450	
Bromomethane	ND	0.00400	0.00007	0.00400	0.00007	Table 11.3-6	117-8	
Butylbenzylphthalate	1.80E-05	0.00004	0.00000	0.00004	0.00000	T-11 44 0 0	05.0	
Carbon disulfide	4.30E-05	0.00004	0.00000	0.00004	0.00000	Table 11.3-6	_	
Carbon tetrachloride	4.30E-05 ND	0.00009	0.00000	0.00009	0.00000	Table 11.3-6	75-1	
Chlorine		0.00000	0.00005	0.00000	0.00005	T 11 11 0 0	-	
Chlorobenzene	1.30E-03 ND	0.00260	0.00005	0.00260	0.00005	Table 11.3-6	7782-	
Chloroethane		0.00444	0.00000	0.00111				
	5.70E-04	0.00114	0.00002	0.00114	0.00002	Table 11.3-6	75-00	
Chloroform	ND							
Chloromethane	6.70E-04	0.00134	0.00002	0.00134	0.00002	Table 11.3-6	74-87	
ibenzofuran	ND							
i-n-butylphthalate	1.40E-04	0.00028	0.00001	0.00028	0.00001	Table 11.3-6	84-74	
i-n-octylphthalate	ND							
iethylphthalate	2.40E-04	0.00048	0.00001	0.00048	0.00001	Table 11.3-6	84-66	
imethylphthalate	ND							
thylbenzene	4.40E-05	0.00009	0.00000	0.00009	0.00000	Table 11.3-6	100-4	
domethane	9.30E-05	0.00019	0.00000	0.00019	0.00000	Table 11.3-6	74-88	
ophorone	ND							
-/p-xylene	6.70E-05	0.00013	0.00000	0.00013	0.00000	Table 11.3-6	1330-2	
ethylene chloride	ND	1					mula	
aphthalene	6.50E-05	0.00013	0.00000	0.00013	0.00000	Table 11.3-6	91-20	
-xylene	5.80E-05	0.00012	0.00000	0.00012	0.00000	Table 11.3-6	95-47	
nenol	8.60E-05	0.00017	0.00000	0.00017	0.00000	Table 11.3-6	108-95	
yrene	2.00E-05	0.00004	0.00000	0.00004	0.00000	Table 11.3-6	100-42	
etrachloroethane	2.80E-06	0.00001	0.00000	0.00001	0.00000	Table 11.3-6	127-18	
ichloroethane	ND							
oluene	1.60E-04	0.00032	0.00001	0.00032	0.00001	Table 11.3-6	108-88	
nyl acetate	ND							
ichlorofluoromethane	ND							
AP Total (not HF or HCL)		0.0170	0.0003	0.0170	0.0003			

⁽¹⁾ The periodic kiln operates in a batch mode with up to two (2) tons per batch. Yearly estimated production is based on 36 batches per year. It is assumed that the emissions occur in one hour of the 24 hour emissions cycle.

⁽²⁾ HF emissions factor from material testing and is material specific instead of fuel specific.

⁽³⁾ Unless noted the emission factors are from AP-42.

 By: PEW
 Checked By: CCS

 Date: December 22, 2009
 Date: December 22, 2009

Periodic Kiln

Natural Gas Emissions Based on Combustion

Heat Content of Fuel = 1,000 BTU/scf Standard BTU of Total System = 500,000 Btu/hr Estimated No. of Burners = Counted Burner Rating = 250,000 MM Btu/hr Estimated Firing Time for Batch = 2 Days 48 Hours Number of Batches per Year = 36 Hours of Operation = 72 hrs/year Fuel Usage = 0.0005 10⁶ scf per hour 0.04 10⁶ scf/year

Note: the flames do not have any controls for emissions: therefore, uncontrolled is equal to potential maximum emissions.

Rounding to =

		h	counding to =	2
Emission	EF	Emi	ssions	EF
Туре	lb/10 ⁶ scf	lb/hr	tons/year	Reference
PM	7.6	0.01	0.01	Table 1.4-2
PM10 ⁽¹⁾	7.6	0.01	0.01	See Note 1
PM2.5 ⁽¹⁾	7.6	0.01	0.01	See Note 1
SO ₂	0.6	0.01	0.01	Table 1.4-2
NOx	100	0.05	0.01	Table 1.4-1
CO	84	0.05	0.01	Table 1.4-1
VOC	5.5	0.01	0.01	Table 1.4-2
Hazardous Air Pollutants				
HAPS- VOC(2)	1.88	0.01	0.01	Table 1.4-3
HAPS - METAL ⁽³⁾	0.00556	0.01	0.01	Table 1.4-4

Rounding to =

2

Notes:

- 1 It is assumed that PM10 and PM2.5 are equal to TSP (PM).
- 2 Total VOC HAPS as listed in Table 1.4-3 (AP-42).
- 3 Total METAL HAPS as listed in Table 1.4-4 (AP-42).

NOTE: Emissions from Kiln emissions factors result in higher emissions so the requested limits are based on the kiln emission values.

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW

Checked By: CCS Date: December 22, 2009

Date: December 22, 2009

Batch or Continuous Drops: Shale Transfers

Defining transfer point empirical expression variables, where:

?

lb/ton dimensionless

k = U = 0.74 7

mph %

M = 10 Calculating transfer point emission factor using Equation 1: E = 0.0004 lb/ton

Transfer	Transfer Capacities			
tons/hour	tons/year			
75	153,300			

ID		Control		Emission	unding to =		
		Device	Uncontro	olled	Controlled		
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
TP1	MD	0	0.03	0.03	0.03	0.03	
TP2	FE	80	0.03	0.03	0.01	0.01	
TP3	FE	80	0.03	0.03	0.01	0.01	
TP4	FE	80	0.03	0.03	0.01	0.01	
TP5	FE	80	0.03	0.03	0.01	0.01	
TP6	FE	80	0.03	0.03	0.01	0.01	
TP7	FE	80	0.03	0.03	0.01	0.01	
TP8	FE	80	0.03	0.03	0.01	0.01	
TP9	FE	80	0.03	0.03	0.01	0.01	
TP10	FE	80	0.03	0.03	0.01	0.01	
TP11	FE	80	0.03	0.03	0.01	0.01	
TP12	FE	80	0.03	0.03	0.01	0.01	
TP13	FE	80	0.03	0.03	0.01	0.01	
TP14	FE	80	0.03	0.03	0.01	0.01	
TP15	FE	80	0.03	0.03	0.01	0.01	
TP16	FE	80	0.03	0.03	0.01	0.01	
TP17	FE	80	0.03	0.03	0.01	0.01	
TP18	FE	80	0.03	0.03	0.01	0.01	
TP19	FE	80	0.03	0.03	0.01	0.01	
TP20	FE	80	0.03	0.03	0.01	0.01	
TP21	FE	80	0.03	0.03	0.01	0.01	
TP22	FE	80	0.03	0.03	0.01	0.01	
TP23	FE	80	0.03	0.03	0.01	0.01	
TP24	FE	80	0.03	0.03	0.01	0.01	
TP25	FE	80	0.03	0.03	0.01	0.01	
TP26	FE	80	0.03	0.03	0.01	0.01	
TP27	FE	80	0.03	0.03	0.01	0.01	
		Continue	d on Next Page				

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW

Checked By: CCS Date: December 22, 2009

Date: December 22, 2009

Batch or Continuous Drops: Shale Transfers

Defining transfer point empirical expression variables, where:

lb/ton k= 0.74 dimensionless U= 7 mph

M = 10 %

Calculating transfer point emission factor using Equation 1:

E = 0.0004 lb/ton

Transfer	Capacities
tons/hour	tons/year
75	153,300

ID	(Control		Emissions	unding to =	
	Device		Uncontro	lled	Controlled	
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP28	FE	80	0.03	0.03	0.01	0.01
TP29	FE	80	0.03	0.03	0.01	0.01
TP30	FE	80	0.03	0.03	0.01	0.01
TP31	FE	80	0.03	0.03	0.01	0.01
TP32	FE	80	0.03	0.03	0.01	0.01
		PM	0.96	0.96	0.34	0.34
	Г	PM10	0.45	0.45	0.16	0.16
		PM2.5	0.07	0.07	0.02	0.02

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles

K factor for equation:

PM (<30 micons) = 0.74

PM10 (<10 micons) =

0.35 PM2.5 (<2.5 micons) = 0.053

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

D. DEW	
By: PEW	Checked By: CCS
Date: December 22, 2009	
Date: December 22, 2003	Date: December 22, 2009

PM Grinding and Screening (CR1 and SC1-4)

Rounding to =

2

ID	Transfer	ansfer Capacities e Control Em					Emis	ssions		
			Device		evice	Uncontrolled		Controlled		
	tons/hour	tons/year	lb/T	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
PM	75.00	153,300	0.62	FE	80	46.50	47.52	9.30	9.50	
PM10	75.00	153,300	0.32	FE	80	24.00	24.53	4.80	4.91	
PM2.5	75.00	153,300	0.04	FE	80	3.00	3.07	0.60	0.61	

Emission Factor Reference and Determination

The emission factor is based on AP-42, Table 11.3-1, for Grinding and Screening Operations with Fabric Filter. The reference states this is for material with a 6.5 percent moisture content. The estimated fabric filter control is deducted out of the stated emissions factor.

	PM	PM10	PM2.5
Grinding and Screening Operations with Fabric Filter	0.0062	0.0032	NA
Assumed Control Percentage for Fabric Filter		99	147 (
Estimated Grinding and Screening Operations without Fabric Filter	0.62	0.32	0.04

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW	Checked By: CCS
Date: December 22, 2009	
Date. December 22, 2009	Date: December 22, 2009

Brick Forming

Rounding to =

2

ID	Transfer Capacities		е	C	ontrol		Emis	sions	
				D	evice	Uncon	trolled	Conti	rolled
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	17.50	153,300	0.72	FE	80	12.60	55.19	2.52	11.04
PM10	17.50	153,300	0.36	FE	80	6.30	27.59	1.26	5.52
PM2.5	17.50	153,300	0.05	FE	80	0.88	3.83	0.18	0.77

Emission Factor Reference and Determination

The emission factor is based on AP-42, Table 11.3-1, for Extrusion Line with Fabric Filter. The estimated fabric filter control is deducted out of the stated emissions factor.

	PM*	PM10	PM2.5
Extrusion Line with Fabric Filter	NA	0.0036	NA
Assumed Control Percentage for Fabric Filter	99		
Estimated Grinding and Screening Operations without Fabric Filter	0.72	0.36	0.05

^{*}PM estimated at two times the PM10 value.

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW

Date: December 22, 2009

Checked By: CCS

Date: December 22, 2009

Batch or Continuous Drops: Coal Fuel System

Defining transfer point empirical expression variables, where:

? lb/ton

Max Hours = 8760 hrs/yr 0.74 dimensionless

U= 7 mph

M = 5 %

Calculating transfer point emission factor using Equation 1:

E = 0.0010 lb/ton

ID	D Transfer Capacities		(Control			Rounding to = Emissions			
			Device		Unco	ntrolled	Contro	olled		
	tons/hour	tons/year	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
CTP1	100	13,140	MD	0	0.1000	0.0066	0.1000	0.0066		
CTP2	100	13,140	PE	50	0.1000	0.0066	0.0500	0.0033		
CTP3	100	13,140	PE	50	0.1000	0.0066	0.0500	0.0033		
CTP4	100	13,140	FE	80	0.1000	0.0066	0.0200	0.0013		
CTP5	1.5	13,140	BAG	95	0.0015	0.0066	0.00008	0.0003		
CTP6	1.5	13,140	BAG	95	0.0015	0.0066	0.00008	0.0003		
CTP7	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013		
CTP8	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013		
CTP9	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013		
CTP10	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013		
CTP11	1.5	13,140	FE	80	0.0015	0.0066	0.0003	0.0013		
				PM	0.41050	0.07227	0.22166	0.02167		
				PM10	0.19416	0.03418	0.10484	0.01025		
				PM2.5	0.02940	0.00518	0.01588	0.00155		

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles

K factor for equation:

PM (<30 micons) =

0.74

PM10 (<10 micons) = PM2.5 (<2.5 micons) =

0.35 0.053

Coal Dry Grinding

Rounding to =

2

ID	Transfer Capacities		Transfer Capacities e Control		Emissions				
				Devi	ce	Unco	ntrolled	Cont	rolled
	tons/hour	tons/year	lb/T	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
PM	1.50	13,140	28.80	BAG	95	43.20	189.22	2.16	9.46
PM10	1.50	13,140	26.00	BAG	95	39.00	170.82	1.95	8.54
PM2.5	1.50	13,140	26.00	BAG	95	39.00	170.82	1.95	8.54

Emission Factor Reference

The emission factor is based on AP-42, Table 11.24-2, Dry Grinding with Air Conveying and/or Classification.

	PM	PM10	PM2.5*
Dry Grinding with Air Conveying and/or Classification	28.8	26	26

* PM2.5 assumed to be equal to PM10.

Coal Fuel System Total Emissions

		Emissions						
	Uncor	trolled	Contro	lled				
	(lb/hr)	(tpy)	(lb/hr)	(tpy)				
PM	43.61	189.29	2.38	9.48				
PM10	39.19	170.85	2.05	8.55				
PM2.5	39.03	170.83	1.97	8.54				

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW	Checked By: CCS
Date: December 22, 2009	Date: December 22, 2009

Emergency Generator

Specifications

Manufacturer =	Generac		
Displacement =	1.3	L	Provided
Fuel Consumption =	159	cfh	Provided
Assumed Heating Value of Diesel Fuel=	1,000	Btu/cubic ft.	Standard
Maximum Fuel Input=	0.159	MMBtu/hour	Calculated
Hours Per Year =	500	Hrs/yr	Allowable

			Rounding to =	4
Regulated Pollutant	Emission Factor (lb/MMBtu)	Hourly Emissions (Ibs/hour)	Annual Emissions (tons/year) 500 hrs	EF Reference AP-42
PM (equal to PM10)	9.99E-03	0.0016	0.0004	Table 3.2-2
PM10	9.99E-03	0.0016	0.0004	Table 3.2-2
PM2.5 ^(1&3)	7.71E-05	0.0001	0.0001	Table 3.2-2
SO2 ⁽³⁾	5.88E-04	0.0001	0.0001	Table 3.2-2
NOX	4.08E+00	0.6487	0.1622	Table 3.2-2
СО	3.17E-01	0.0504	0.0126	Table 3.2-2
VOC	1.18E-01	0.0188	0.0047	Table 3.2-2
Hazardous Air Pollutar	nts (HAPS)			
HAPS- VOC(2)	7.20E-02	0.0114	0.0029	Table 3.2-2

Notes:

- 1 It is assumed that PM10 and PM2.5 are equal. PM is total of PM Condensable and PM10.
 2 Total VOC HAPS as listed in Table 3.2-2 (AP-42).
 3 Roundup used to show numbers greater than zero.

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW	Checked By: CCS
Date: December 22, 2009	Date: December 22, 2009
	Date. December 22, 2009

Sand Dryer (Natural Gas Fueled)

Fuel Use =	5,000	cf/hr	Estimated
Heat Content of Fuel =	1,000	BTU/scf	Standard
BTU of Total System =	5,000,000	Btu/hr	Estimated
No. of Burners =	5		Counted
Burner Rating =	1,000,000	MM Btu/hr	Estimated
Hours of Operation =	8,760	hrs/year	
Fuel Usage =	0.0050	10 ⁶ scf per hour	
	43.80	10 ⁶ scf/year	

Note: the flames do not have any controls for emissions: therefore, uncontrolled is equal to potential maximum emissions.

			Rounding to =	- 2	
Emission	EF ^(a)	Em	issions	EF	
Туре	lb/10 ⁶ scf	lb/hr	tons/year	Reference	
PM	7.6	0.04	0.17	Table 1.4-2	
PM10 ⁽¹⁾	7.6	0.04	0.17	See Note 1	
PM2.5 ⁽¹⁾	7.6	0.04	0.17	See Note 1	
SO ₂	0.6	0.01	0.02	Table 1.4-2	
NOx	100	0.50	2.19	Table 1.4-1	
CO	84	0.42	1.84	Table 1.4-1	
VOC	5.5	0.03	0.13	Table 1.4-2	
Hazardous Air Pollutants					
HAPS- VOC(2)	1.88	0.01	0.05	Table 1.4-3	
HAPS - METAL(3)	0.00556	0.01	0.01	Table 1.4-4	

Notes:

- 1 It is assumed that PM10 and PM2.5 are equal to TSP (PM).
- 2 Total VOC HAPS as listed in Table 1.4-3 (AP-42).
- 3 Total METAL HAPS as listed in Table 1.4-4 (AP-42).

Batch or Continuous Drops: Sand into Stockpiles and Moved Around Site (i.e. to dryer or into plant)

Defining transfer point empirical expression variables, where:

e = lb/ton k = 0.74 dimensionless U = 7 mph M =

Calculating transfer point emission factor using Equation 1:

E = 0.0097 lb/ton

Transfer Capacities			
tons/hour	tons/year		
100	1,200		

					Rounding to =	:	
ID	Co	ntrol		Emis	sions		
	De	Device		Uncontrolled		Controlled	
	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
TP33	MD	0	0.970	0.006	0.970	0.006	
80 N N N N N N N N N N N N N N N N N N N		PM	0.970	0.006	0.970	0.006	
		PM10	0.46	0.0028	0.46	0.002	
		PM2.5	0.069	0.0004	0.069	0.0020	

Reference: AP-42 13.2.4, Aggregate Handling and Storage Piles

K factor for equation:

PM (<30 micons) = 0.74 PM10 (<10 micons) = 0.35

PM2.5 (<2.5 micons) =

0.053

POTESTA & ASSOCIATES, INC. Project No.: 0101-07-0327

By: PEW

Date: December 22, 2009

Checked By: CCS Date: December 22, 2009

Stockpiles

Defining open stockpile empirical expression variables, where:

Shale/Sand

? lb/day/acre

s = %

days 148

p = f = 25 %

Calculating open stockpile emission factor using Equation 2:

e = 1.74 lb/day/acre

Rounding to =

2

S	tockpile	kpile Control			Emis	sions	
ID	Area	De	vice	Uncon	trolled	Contr	olled
	(square feet)	Type	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
OS1	392,040	N	0	0.65	2.86	0.65	2.86
OS2	43,560	N	0	0.07	0.32	0.07	0.32
					Totals		
			PM	0.72	3.18	0.72	3,18
			PM10	0.34	1.50	0.34	1.50
			PM2.5	0.05	0.23	0.05	0.23

OS1 estimated at 9 acres and OS2 estimated at 1 acre max. Covered coal and sand stockpiles are assumed to not have emissions.

By: PEW Date: December 22, 2009 Vehicle Activity

Checked By: CCS Date: December 22, 2009

Rounding to =

2

Vehicle	N	o.	Miles	Control				Emissio	ns	
Roadway	of Ve	hicles	Per Trip	De	evice		Uncontr	olled	Control	led
	Per Hour	Per Year	(mi)	Type	Effic(%)		(ib/hr)	(tpy)	(lb/hr)	(tpy)
1	5	10,220	1	RWMW	75	PM	39.90	40.78	9.98	10.20
					75	PM10	11.35	11.60	2.84	2.90
					75	PM2.5	1.15	1.18	0.29	0.30
2	1	365	0.5	RWMW	75	PM	4.12	0.75	1.03	0.19
					75	PM10	1.22	0.22	0.31	0.06
					75	PM2.5	0.12	0.02	0.03	0.01
3	1	7,227	0.5	RWMW	75	PM	4.12	14.87	1.03	3.72
					75	PM10	1.22	4.39	0.31	1.10
					75	PM2.5	0.12	0.43	0.03	0.11
4	21	43,013	0.25	RWMW	75	PM	41.98	42.91	10.50	10.73
					75	PM10	11.94	12.21	2.99	3.05
the state of the s					75	PM2.5	1.21	1.24	0.30	0.31

Estimated Vehicle Travel Per Year							
Roadway	1	2	3	4			
	Pit Road	Delivery Road	Sales Exit	Endloader			
Trips per Hour	5	1	1	21.0			
Load Weight	15	20	20	4			
Total Weight/Yr	153,300	7,300	144,540	153,300			
Total Trips	10,220	365	7,227	43,013			

	Totals						
PM	90.12	99.31	22.54	24.84			
PM10	25.73	28.42	6.45	7.11			
PM2.5	2.60	2.87	0.65	0.73			

AP-42, 13.2.2, Unpaved Roads

E=k(s/12)^a(W/3)^b[(365-P)/365)]

Rounding	to	=
----------	----	---

	PM						
	1	2	3	4			
Input	Pit Road	Delivery Road	Sales Exit	Endloader	Reference		
k	4.9	4.9	4.9	4.9	Table 13.2.2-2		
s	8.3	10	10		Table 13.2.2-1		
а	0.7	0.7	0.7	0.7	Table 13.2.2-2		
W	50	40	40	50	Estimate		
b	0.45	0.45	0.45	0.45	Table 13.2.2-2		
P	148	148	148		DAQ (GP Ref)		
E =	7.98	8.23	8.23	7.98	Calc.		

PM10						
	1	2	3	4		
Input	Pit Road	Delivery Road	Sales Exit	Endloader		
k	1.5	1.5	1.5	1.5	Table 13.2.2-2	
S	8.3	10	10	8.3	Table 13.2.2-1	
а	0.9	0.9	0.9	0.9	Table 13.2.2-2	
W	50	40	40	50	Estimate	
b	0.45	0.45	0.45	0.45	Table 13.2.2-2	
P	148	148	148	148	DAQ (GP Ref)	
E =	2.27	2.43	2.43		Calc.	

PM2.5						
	1	2	3	4		
Input	Pit Road	Delivery Road	Sales Exit	Endloader		
k	0.15	0.15	0.15	0.15	Table 13.2.2-2	
S	8.3	10	10	8.3	Table 13.2.2-1	
а	0.9	0.9	0.9	0.9	Table 13.2.2-2	
W	50	40	40		Estimate	
b	0.45	0.45	0.45	0.45	Table 13.2.2-2	
P	148	148	148	148	DAQ (GP Ref)	
E =	0.23	0.24	0.24		Calc.	

Potesta & Associates, Inc. Project Number: 0101-13-0410-001

 By: PEW
 Checked By: JAG

 Date: 11/15/2013
 Date: 11/15/2013

Summary of CO2e Emissions

Facility Emissions

Emission Unit	CO2e (metric tons)	CO2 (short tons)	Exceed 100,000 metric tons
Tunnel Kiln 1	29,755	32,799	mente ions
Tunnel Kiln 2	29,755	32,799	
Periodic Kiln	2	2	
Sand Dryer	2,390	2,634	
Total	61,901	68,234	NO

Metric to Short Ton Conversion Divide By = 0.9072

By: PEW

Checked By: JAG Date: 11/15/2013

Date: 11/15/2013

Tunnel Kiln - CO2e Emissions from Natural Gas/Coal Combustion

	Per Each	Kiln		1
Poter	ntial Emissions	(Metric Tons))	
Fuel Type	CO2	CH4	N2O	
PNG/Coal	29,621.79	2.07	0.29	
100 yr GWP*	1	21	310	Total CO2e
CO2e	29,621.79	43.51	89.61	29,755
		One Kiln	Short Tons	32,799

	Kiln Burners
30,000,000	btu/hr
1,000	btu/scf N.G.
8,760	hrs/yr
262,800,000	scf of natural gas burned per year per kiln
6,570	tons coal burned per year per kiln

Maximum yearly tons of fuel coal for both tunnel kilns = 13,140

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from k	ilograms to metric tons
262,800,000	cubic feet of natural gas l	burned annually
1.028E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1
53.02	kg CO2/MMBtu	natural gas emission factor from Table C-1
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2
	· ·	

Coal Combustion

1.00E-03	conversion factor from kilo	grams to metric tons
6,570	tons of coal burned annually	y
24.93	HHV MMBtu/short ton	bitunimous coal high heating value (HHV) from Table C-1
93.4	kg CO2/MMBtu	bituminous coal emission factor from Table C-1
1.10E-02	kg CH4/MMBtu	bituminous coal emission factor from Table C-2
1.60E-03	kg N2O/MMBtu	bituminous coal emission factor from Table C-2

By: PEW Date: 11/15/2013

Checked By: JAG Date: 11/15/2013

Periodic Kiln - CO2e Emissions from Natural Gas

Poten	tial Emission	s (Metric Ton	s)	
Fuel Type	CO2	CH4	N2O	
Natural Gas	1.96	0.00	0.00	1
100 yr GWP*	1	21	310	Total CO2e
CO2e	1.96	0.00	0.00	2
			Short Tons	2

AP1 Burner
36,000 scf of natural gas burned per year
500,000 btu/hr burner
72 hrs/yr
1,000 btu/scf N.G.

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from k	ilograms to metric tons
36,000	cubic feet of natural gas	burned annually
1.028E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1
53.02	kg CO2/MMBtu	natural gas emission factor from Table C-1
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

 By: PEW
 Checked By: JAG

 Date: 11/15/2013
 Date: 11/15/2013

Sand Dryer - CO2e Emissions from Natural Gas

Pote	ntial Emissions	(Metric Ton	s)	
Fuel Type	CO2	CH4	N2O	
Natural Gas	2,387.30	0.05	0.00	
100 yr GWP*	1	21	310	Total CO2e
CO2e	2,387.30	0.95	1.40	2,390
			Short Tons	2,634

AP1 Burner
43,800,000 scf of natural gas burned per year
5,000,000 btu/hr burner
8,760 hrs/yr
1,000 btu/scf N.G.

 $CO2 = 1 \times 10^{-3}$ *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

conversion factor from kilograms to metric tons 1.00E-03 43,800,000 cubic feet of natural gas burned annually 1.028E-03 HHV MMBtu/scf natural gas high heating value (HHV) from Table C-1 natural gas emission factor from Table C-1 kg CO2/MMBtu 53.02 kg CH4/MMBtu 1.00E-03 natural gas emission factor from Table C-2 kg N2O/MMBtu natural gas emission factor from Table C-2 1.00E-04

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

Potesta & Associates, Inc. Project Number: 0101-13-0410-001

 By: PEW
 Checked By: JAG

 Date: 11/15/2013
 Date: 11/15/2013

Summary of CO2e Emissions

Facility Emissions

8	Emission Unit	CO2e	CO2	Exceed
		(metric tons)	(short tons)	100,000 metric
				tons CO2e?
	Tunnel Kiln 1	29,755	32,799	
	Tunnel Kiln 2	29,755	32,799	
	Periodic Kiln	2	2	
	Sand Dryer	2,390	2,634	
	Total	61,901	68,234	NO

Metric to Short Ton Conversion Divide By =

0.9072

Checked By: JAG

Date: 11/15/2013

By: PEW
Date: 11/15/2013

Tunnel Kiln - CO2e Emissions from Natural Gas/Coal Combustion

	Per Each	Kiln		7
Poter	ntial Emissions	(Metric Tons)	1
Fuel Type	CO2	СН4	N2O	
PNG/Coal	29,621.79	2.07	0.29	1
100 yr GWP*	1	21	310	Total CO2e
CO2e	29,621.79	43.51	89.61	29,755
		One Kiln	Short Tons	32,799

	Kiln Burners		
30,000,000 btu/hr			
1,000	btu/scf N.G.		
8,760 hrs/yr			
262,800,000	scf of natural gas burned per year per kiln		
6,570	tons coal burned per year per kiln		

Maximum yearly tons of fuel coal for both tunnel kilns = 13,140

*Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-l

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03 conversion factor from kilograms to metric tons 262,800,000 cubic feet of natural gas burned annually 1.028E-03 HHV MMBtu/scf natural gas high heating value (HHV) from Table C-1 natural gas emission factor from Table C-1 53.02 kg CO2/MMBtu 1.00E-03 kg CH4/MMBtu natural gas emission factor from Table C-2 1.00E-04 kg N2O/MMBtu natural gas emission factor from Table C-2

Coal Combustion

1.00E-03	conversion factor from kilogr	ams to metric tons
6,570	tons of coal burned annually	
24.93	HHV MMBtu/short ton	bitunimous coal high heating value (HHV) from Table C-1
93.4	kg CO2/MMBtu	bituminous coal emission factor from Table C-1
1.10E-02	kg CH4/MMBtu	bituminous coal emission factor from Table C-2
1.60E-03	kg N2O/MMBtu	bituminous coal emission factor from Table C-2

> Checked By: JAG Date: 11/15/2013

By: PEW
Date: 11/15/2013

Periodic Kiln - CO2e Emissions from Natural Gas

Poten	tial Emission	s (Metric Ton	s)	1
Fuel Type	CO2	CH4	N2O	
Natural Gas	1.96	0.00	0.00	1
100 yr GWP*	1	21	310	Total CO2e
CO2e	1.96	0.00	0.00	2
			Short Tons	2

AP1 Burner
36,000 scf of natural gas burned per year
500,000 btu/hr burner
72 hrs/yr
1,000 btu/scf N.G.

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03	conversion factor from l	cilograms to metric tons		
36,000	cubic feet of natural gas burned annually			
1.028E-03	HHV MMBtu/scf	natural gas high heating value (HHV) from Table C-1		
53.02	kg CO2/MMBtu	natural gas emission factor from Table C-1		
1.00E-03	kg CH4/MMBtu	natural gas emission factor from Table C-2		
1.00E-04	kg N2O/MMBtu	natural gas emission factor from Table C-2		

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1

By: PEW

Date: 11/15/2013

Checked By: JAG Date: 11/15/2013

Sand Dryer - CO2e Emissions from Natural Gas

Pote]			
Fuel Type	CO2	CH4	N2O	
Natural Gas	2,387.30	0.05	0.00	1
100 yr GWP*	1	21	310	Total CO2e
CO2e	2,387.30	0.95	1.40	2,390
			Short Tons	2,634

AP1 Burner
43,800,000 scf of natural gas burned per year
5,000,000 btu/hr burner
8,760 hrs/yr
1,000 btu/scf N.G.

CO2 = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-2a) CH4 or N2O = 1×10^{-3} *mass of fuel*HHV*EF (Eq. C-9a)

Natural Gas Combustion

1.00E-03 conversion factor from kilograms to metric tons 43,800,000 cubic feet of natural gas burned annually HHV MMBtu/scf 1.028E-03 natural gas high heating value (HHV) from Table C-1 53.02 kg CO2/MMBtu natural gas emission factor from Table C-1 1.00E-03 kg CH4/MMBtu natural gas emission factor from Table C-2 1.00E-04 kg N2O/MMBtu natural gas emission factor from Table C-2

^{*}Global Warming Potentials (GWP) Referenced from 40CFR§98 Subpart A Table A-1